메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Comparison of evolutionary algorithms in gene regulatory network model inference

Author keywords

[No Author keywords available]

Indexed keywords

CAUSAL RELATIONSHIPS; COMPREHENSIVE COMPARISONS; GENE EXPRESSION DATA; GENE EXPRESSION LEVELS; GENE REGULATORY NETWORK MODEL; GENE REGULATORY NETWORKS; HIGH THROUGHPUT TECHNOLOGY; ROBUSTNESS TO NOISE;

EID: 77649176945     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-59     Document Type: Article
Times cited : (62)

References (60)
  • 1
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and Simulation of Genetic Regulatory Systems: A Literature Review
    • 10.1089/10665270252833208, 11911796
    • de Jong H. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology 2002, 9:67-103. 10.1089/10665270252833208, 11911796.
    • (2002) Journal of Computational Biology , vol.9 , pp. 67-103
    • de Jong, H.1
  • 3
    • 55549143637 scopus 로고    scopus 로고
    • The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model
    • 10.1016/j.jtbi.2008.07.020, 18692073
    • Davidich M, Bornholdt S. The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model. Journal of Theoretical Biology 2008, 255(3):269-277. 10.1016/j.jtbi.2008.07.020, 18692073.
    • (2008) Journal of Theoretical Biology , vol.255 , Issue.3 , pp. 269-277
    • Davidich, M.1    Bornholdt, S.2
  • 4
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modelling
    • 10.1186/1471-2105-8-S6-S9, 1995542, 17903290
    • Schlitt T, Brazma A. Current approaches to gene regulatory network modelling. BMC Bioinformatics 2007, 8(Suppl 6):S9. 10.1186/1471-2105-8-S6-S9, 1995542, 17903290.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Schlitt, T.1    Brazma, A.2
  • 5
    • 33846186035 scopus 로고    scopus 로고
    • Gene regulatory network models for plant development
    • [Growth and Development/Edited by Cris Kuhlemeier and Neelima Sinha], 10.1016/j.pbi.2006.11.008, 17142086
    • Alvarez-Buylla ER, Benitez M, Davila EB, Chaos A, Espinosa-Soto C, Padilla-Longoria P. Gene regulatory network models for plant development. Current Opinion in Plant Biology 2007, 10:83-91. [Growth and Development/Edited by Cris Kuhlemeier and Neelima Sinha], 10.1016/j.pbi.2006.11.008, 17142086.
    • (2007) Current Opinion in Plant Biology , vol.10 , pp. 83-91
    • Alvarez-Buylla, E.R.1    Benitez, M.2    Davila, E.B.3    Chaos, A.4    Espinosa-Soto, C.5    Padilla-Longoria, P.6
  • 6
    • 0031616241 scopus 로고    scopus 로고
    • Reveal: a general reverse engineering algorithm for inference of genetic network architectures
    • Liang S, Fuhrman S, Somogyi R. Reveal: a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing 1998, 18-29.
    • (1998) Pacific Symposium on Biocomputing , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 10
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 10.1089/106652700750050961, 11108481
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7:601-620. 10.1089/106652700750050961, 11108481.
    • (2000) Journal of Computational Biology , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 11
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • 10.1093/bioinformatics/16.8.727, 11099258
    • Akutsu T, Miyano S, Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 2000, 16(8):727-734. 10.1093/bioinformatics/16.8.727, 11099258.
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 12
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: a rule based uncertainty model for gene regulatory networks
    • 10.1093/bioinformatics/18.2.261, 11847074
    • Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18:261-274. 10.1093/bioinformatics/18.2.261, 11847074.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 17
    • 41549085829 scopus 로고    scopus 로고
    • Petri net modelling of gene regulation of the Duchenne muscular dystrophy
    • Grunwald S, Speer A, Ackermann J, Koch I. Petri net modelling of gene regulation of the Duchenne muscular dystrophy. Bio Systems 2008, 92(2):189-205.
    • (2008) Bio Systems , vol.92 , Issue.2 , pp. 189-205
    • Grunwald, S.1    Speer, A.2    Ackermann, J.3    Koch, I.4
  • 18
    • 34547788797 scopus 로고    scopus 로고
    • Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
    • 10.1186/1471-2105-8-S5-S2, 1892090, 17570861
    • Ferrazzi F, Sebastiani P, Ramoni M, Bellazzi R. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinformatics 2007, 8(Suppl 5):S2. 10.1186/1471-2105-8-S5-S2, 1892090, 17570861.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 5
    • Ferrazzi, F.1    Sebastiani, P.2    Ramoni, M.3    Bellazzi, R.4
  • 19
    • 27844517961 scopus 로고    scopus 로고
    • Model gene network by semi-fixed Bayesian network
    • [Intelligent Bioinformatics Systems]
    • Liu TF, Sung WK, Mittal A. Model gene network by semi-fixed Bayesian network. Expert Systems with Applications 2006, 30:42-49. [Intelligent Bioinformatics Systems].
    • (2006) Expert Systems with Applications , vol.30 , pp. 42-49
    • Liu, T.F.1    Sung, W.K.2    Mittal, A.3
  • 20
    • 27544494569 scopus 로고    scopus 로고
    • Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data
    • Nariai N, Tamada Y, Imoto S, Miyano S. Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics 2005, 21(Suppl 2):206-212.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2 , pp. 206-212
    • Nariai, N.1    Tamada, Y.2    Imoto, S.3    Miyano, S.4
  • 22
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • 10.1016/S0303-2647(99)00090-8, 10745116
    • Wahde M, Hertz J. Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 2000, 55(1-3):129-136. 10.1016/S0303-2647(99)00090-8, 10745116.
    • (2000) Biosystems , vol.55 , Issue.1-3 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 23
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and S-system
    • 10.1093/bioinformatics/btg027, 12651723
    • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M. Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 2003, 19(5):643-650. 10.1093/bioinformatics/btg027, 12651723.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 24
    • 4344703653 scopus 로고    scopus 로고
    • Nonlinear Numerical Optimization Technique Based on a Genetic Algorithm for Inverse Problems: Towards the Inference of Genetic Networks
    • Tominaga D, Okamoto M, Maki Y, Watanabe S, Eguchi Y. Nonlinear Numerical Optimization Technique Based on a Genetic Algorithm for Inverse Problems: Towards the Inference of Genetic Networks. GCB99 German Conference on Bioinformatics 1999, 101-111.
    • (1999) GCB99 German Conference on Bioinformatics , pp. 101-111
    • Tominaga, D.1    Okamoto, M.2    Maki, Y.3    Watanabe, S.4    Eguchi, Y.5
  • 27
    • 34848893948 scopus 로고    scopus 로고
    • Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
    • 10.1016/j.neunet.2007.07.002, 17714912
    • Xu R, Venayagamoorthy GK, Donald C, Wunsch I. Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Networks 2007, 20(8):917-927. 10.1016/j.neunet.2007.07.002, 17714912.
    • (2007) Neural Networks , vol.20 , Issue.8 , pp. 917-927
    • Xu, R.1    Venayagamoorthy, G.K.2    Donald, C.3    Wunsch, I.4
  • 28
    • 60149094488 scopus 로고    scopus 로고
    • A divide-and-conquer approach to analyze underdetermined biochemical models
    • 10.1093/bioinformatics/btp004, 19126574
    • Kotte O, Heinemann M. A divide-and-conquer approach to analyze underdetermined biochemical models. Bioinformatics 2009, 25(4):519-525. 10.1093/bioinformatics/btp004, 19126574.
    • (2009) Bioinformatics , vol.25 , Issue.4 , pp. 519-525
    • Kotte, O.1    Heinemann, M.2
  • 29
    • 67649230197 scopus 로고    scopus 로고
    • Optimizing static thermodynamic models of transcriptional regulation
    • 10.1093/bioinformatics/btp283, 2732318, 19398449
    • Bauer DC, Bailey TL. Optimizing static thermodynamic models of transcriptional regulation. Bioinformatics 2009, 25(13):1640-1646. 10.1093/bioinformatics/btp283, 2732318, 19398449.
    • (2009) Bioinformatics , vol.25 , Issue.13 , pp. 1640-1646
    • Bauer, D.C.1    Bailey, T.L.2
  • 30
    • 33749137281 scopus 로고    scopus 로고
    • Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene
    • 10.1038/ng1886, 16980977
    • Janssens H, Hou S, Jaeger J, Kim ARR, Myasnikova E, Sharp D, Reinitz J. Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nature Genetics 2006, 38:1159-1165. 10.1038/ng1886, 16980977.
    • (2006) Nature Genetics , vol.38 , pp. 1159-1165
    • Janssens, H.1    Hou, S.2    Jaeger, J.3    Kim, A.R.R.4    Myasnikova, E.5    Sharp, D.6    Reinitz, J.7
  • 31
    • 36248948496 scopus 로고    scopus 로고
    • Inferring gene regulatory networks using differential evolution with local search heuristics
    • Noman N, Iba H. Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2007, 4(4):634-647.
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.4 , pp. 634-647
    • Noman, N.1    Iba, H.2
  • 33
    • 38649104174 scopus 로고    scopus 로고
    • A clustering-based approach for inferring recurrent neural networks as gene regulatory networks
    • Lee WP, Yang KC. A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputation 2008, 71(4-6):600-610.
    • (2008) Neurocomputation , vol.71 , Issue.4-6 , pp. 600-610
    • Lee, W.P.1    Yang, K.C.2
  • 37
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on Reverse-Engineering Assessment and Methods: The DREAM of High-Throughput Pathway Inference
    • 10.1196/annals.1407.021, 17925349
    • Stolovitzky G, Monroe DON, Califano A. Dialogue on Reverse-Engineering Assessment and Methods: The DREAM of High-Throughput Pathway Inference. Annals of the New York Academy of Sciences 2007, 1115:1-22. 10.1196/annals.1407.021, 17925349.
    • (2007) Annals of the New York Academy of Sciences , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.O.N.2    Califano, A.3
  • 38
    • 63849210631 scopus 로고    scopus 로고
    • Lessons from the DREAM2 Challenges: A Community Effort to Assess Biological Network Inference
    • 10.1111/j.1749-6632.2009.04497.x, 19348640
    • Stolovitzky G, Prill RJ, Califano A. Lessons from the DREAM2 Challenges: A Community Effort to Assess Biological Network Inference. Annals of the New York Academy of Sciences 2009, 1158(37):159-195. 10.1111/j.1749-6632.2009.04497.x, 19348640.
    • (2009) Annals of the New York Academy of Sciences , vol.1158 , Issue.37 , pp. 159-195
    • Stolovitzky, G.1    Prill, R.J.2    Califano, A.3
  • 39
    • 70249146903 scopus 로고    scopus 로고
    • Advantages of next-generation sequencing versus the microarray in epigenetic research
    • Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 2009, elp013.
    • (2009) Brief Funct Genomic Proteomic
    • Hurd, P.J.1    Nelson, C.J.2
  • 43
    • 33750714570 scopus 로고    scopus 로고
    • JavaEvA - A Java Framework for Evolutionary Algorithms
    • Centre for Bioinformatics Tübingen, University of Tübingen
    • Streichert F, Ulmer H. JavaEvA - A Java Framework for Evolutionary Algorithms. Technical Report WSI-2005-06 2005, Centre for Bioinformatics Tübingen, University of Tübingen.
    • (2005) Technical Report WSI-2005-06
    • Streichert, F.1    Ulmer, H.2
  • 44
    • 84888274499 scopus 로고
    • Introduction to S-systems and the underlying power-law formalism
    • Savageau MA. Introduction to S-systems and the underlying power-law formalism. Elsevier 1988,
    • (1988) Elsevier
    • Savageau, M.A.1
  • 45
    • 14944363706 scopus 로고    scopus 로고
    • Construction of genetic network using evolutionary algorithm and combined fitness function
    • Shin A, Iba H. Construction of genetic network using evolutionary algorithm and combined fitness function. Genome Inform Ser Workshop Genome Inform 2003, 14:94-103.
    • (2003) Genome Inform Ser Workshop Genome Inform , vol.14 , pp. 94-103
    • Shin, A.1    Iba, H.2
  • 46
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill Science/Engineering/Math
    • Mitchel T. Machine Learning 1997, McGraw-Hill Science/Engineering/Math.
    • (1997) Machine Learning
    • Mitchel, T.1
  • 49
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • 10.1089/cmb.2008.09TT, 19183003
    • Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology 2009, 16(2):229-239. 10.1089/cmb.2008.09TT, 19183003.
    • (2009) Journal of Computational Biology , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 50
    • 33750355003 scopus 로고    scopus 로고
    • Sensitivity of the power-law exponent in gene expression distribution to mRNA decay rate
    • Nacher J, Akutsu T. Sensitivity of the power-law exponent in gene expression distribution to mRNA decay rate. Physics Letters A 2006, 360:174-178.
    • (2006) Physics Letters A , vol.360 , pp. 174-178
    • Nacher, J.1    Akutsu, T.2
  • 52
    • 84888279627 scopus 로고    scopus 로고
    • Notched Boxplots (v1.0.5) in Free Statistics Software (v1.1.23-r4)
    • Wessa P. Notched Boxplots (v1.0.5) in Free Statistics Software (v1.1.23-r4). 2008, , http://www.wessa.net/rwasp_notchedbox1.wasp/
    • (2008)
    • Wessa, P.1
  • 55
    • 0033985570 scopus 로고    scopus 로고
    • Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle
    • 14780, 10637314
    • Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle. Mol Biol Cell 2000, 11:369-391. 14780, 10637314.
    • (2000) Mol Biol Cell , vol.11 , pp. 369-391
    • Chen, K.C.1    Csikasz-Nagy, A.2    Gyorffy, B.3    Val, J.4    Novak, B.5    Tyson, J.J.6
  • 56
    • 0030574260 scopus 로고    scopus 로고
    • Regulation of phosphatase synthesis in Saccharomyces cerevisiae - a review
    • 10.1016/S0378-1119(96)00425-8, 8955644
    • Oshima Y, Ogawa N, Harashima S. Regulation of phosphatase synthesis in Saccharomyces cerevisiae - a review. Gene 1996, 179:171-177. 10.1016/S0378-1119(96)00425-8, 8955644.
    • (1996) Gene , vol.179 , pp. 171-177
    • Oshima, Y.1    Ogawa, N.2    Harashima, S.3
  • 57
    • 0034863951 scopus 로고    scopus 로고
    • Inferring a System of Differential Equations for a Gene regulatory network by using Genetic Programming
    • Sakamoto E, Iba H. Inferring a System of Differential Equations for a Gene regulatory network by using Genetic Programming. Proceedings of Congress on Evolutionary Computation 2001, 720-726.
    • (2001) Proceedings of Congress on Evolutionary Computation , pp. 720-726
    • Sakamoto, E.1    Iba, H.2
  • 59
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data
    • Duke University, Dept of Computer Science, Durham, NC 27708, USA.: World Scientific, Altman RB, Jung TA, Klein TE, Dunker KA, Hunter L
    • Bernard A, Hartemink AJ. Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Proceedings of Pacific Symposium on Biocomputing 2005, 459-470. Duke University, Dept of Computer Science, Durham, NC 27708, USA.: World Scientific, Altman RB, Jung TA, Klein TE, Dunker KA, Hunter L.
    • (2005) Proceedings of Pacific Symposium on Biocomputing , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.