-
1
-
-
79958028969
-
Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa
-
Van Zyl WH, Chimphango AFA, Den Haan R, Gorgens JF and Chirwa PWC, Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa. Interf Focus 1:196-211 (2011).
-
(2011)
Interf Focus
, vol.1
, pp. 196-211
-
-
Van Zyl, W.H.1
Chimphango, A.F.A.2
Den Haan, R.3
Gorgens, J.F.4
Chirwa, P.W.C.5
-
2
-
-
33746655320
-
Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
-
Hill J, Nelson E, Tilman D, Polasky S and Tiffany D, Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206-11210 (2006).
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 11206-11210
-
-
Hill, J.1
Nelson, E.2
Tilman, D.3
Polasky, S.4
Tiffany, D.5
-
3
-
-
33846950348
-
Challenges in engineering microbes for biofuels production
-
Stephanopoulos G, Challenges in engineering microbes for biofuels production. Science 315:801-804 (2007).
-
(2007)
Science
, vol.315
, pp. 801-804
-
-
Stephanopoulos, G.1
-
5
-
-
33947191174
-
Towards industrial pentose-fermenting yeast strains
-
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I and Gorwa-Grauslund MF, Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937-953 (2007).
-
(2007)
Appl Microbiol Biotechnol
, vol.74
, pp. 937-953
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Fonseca, C.3
Spencer-Martins, I.4
Gorwa-Grauslund, M.F.5
-
6
-
-
13444280500
-
Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term
-
Hamelinck CN, Van Hooijdonk G and Faaij APC, Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384-410 (2005).
-
(2005)
Biomass Bioenerg
, vol.28
, pp. 384-410
-
-
Hamelinck, C.N.1
Van Hooijdonk, G.2
Faaij, A.P.C.3
-
7
-
-
77957575145
-
Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways
-
Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD and Dutta A, Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89 (Supplement 1):S29-S35 (2010).
-
(2010)
Fuel 89
, Issue.SUPPL. 1
-
-
Anex, R.P.1
Aden, A.2
Kazi, F.K.3
Fortman, J.4
Swanson, R.M.5
Wright, M.M.6
Satrio, J.A.7
Brown, R.C.8
Daugaard, D.E.9
Platon, A.10
Kothandaraman, G.11
Hsu, D.D.12
Dutta, A.13
-
9
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Van Dijken JP and Pronk JT, Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925-934 (2005).
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
Van Dijken, J.P.5
Pronk, J.T.6
-
10
-
-
0034214335
-
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
-
Van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J and Pronk JT, An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microbiol Technol 26:706-714 (2000).
-
(2000)
Enzyme Microbiol Technol
, vol.26
, pp. 706-714
-
-
Van Dijken, J.P.1
Bauer, J.2
Brambilla, L.3
Duboc, P.4
Francois, J.M.5
Gancedo, C.6
Giuseppin, M.L.7
Heijnen, J.J.8
Hoare, M.9
Lange, H.C.10
Madden, E.A.11
Niederberger, P.12
Nielsen, J.13
Parrou, J.L.14
Petit, T.15
Porro, D.16
Reuss, M.17
van Riel, N.18
Rizzi, M.19
Steensma, H.Y.20
Verrips, C.T.21
Vindelov, J.22
Pronk, J.T.23
more..
-
13
-
-
0028865920
-
Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins
-
de Moraes LM, Astolfi-Filho S and Oliver SG, Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067-1076 (1995).
-
(1995)
Appl Microbiol Biotechnol
, vol.43
, pp. 1067-1076
-
-
de Moraes, L.M.1
Astolfi-Filho, S.2
Oliver, S.G.3
-
14
-
-
84864589323
-
Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast
-
Favaro L, Jooste T, Basaglia M, Rose SH, Saayman M, Gorgens JF, Casella S and Van Zyl WH, Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast. Appl Microbiol Biotechnol 95:957-968 (2012).
-
(2012)
Appl Microbiol Biotechnol
, vol.95
, pp. 957-968
-
-
Favaro, L.1
Jooste, T.2
Basaglia, M.3
Rose, S.H.4
Saayman, M.5
Gorgens, J.F.6
Casella, S.7
Van Zyl, W.H.8
-
15
-
-
78650517852
-
Amylolytic activity and fermentative ability of Saccharomyces cerevisiae strains that express barley α-amylase
-
Liao B, Hill GA and Roesler WJ, Amylolytic activity and fermentative ability of Saccharomyces cerevisiae strains that express barley α-amylase. Biochem Eng J 53:63-70 (2010).
-
(2010)
Biochem Eng J
, vol.53
, pp. 63-70
-
-
Liao, B.1
Hill, G.A.2
Roesler, W.J.3
-
17
-
-
28644438901
-
Characterization of active Lentinula edodes glucoamylase expressed and secreted by Saccharomyces cerevisiae
-
Wong DW, Batt SB, Lee CC, Wagschal K and Robertson GH, Characterization of active Lentinula edodes glucoamylase expressed and secreted by Saccharomyces cerevisiae. Protein J 24:455-463 (2005).
-
(2005)
Protein J
, vol.24
, pp. 455-463
-
-
Wong, D.W.1
Batt, S.B.2
Lee, C.C.3
Wagschal, K.4
Robertson, G.H.5
-
18
-
-
77952243181
-
Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme
-
Kim JH, Kim HR, Lim MH, Ko HM, Chin JE, Lee HB, Kim IC and Bai S, Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme. Biotechnol Lett 32:713-719 (2010).
-
(2010)
Biotechnol Lett
, vol.32
, pp. 713-719
-
-
Kim, J.H.1
Kim, H.R.2
Lim, M.H.3
Ko, H.M.4
Chin, J.E.5
Lee, H.B.6
Kim, I.C.7
Bai, S.8
-
19
-
-
0035936615
-
Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal delta-integration
-
Kim MD, Rhee SK and Seo JH, Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal delta-integration. J Biotechnol 85:41-48 (2001).
-
(2001)
J Biotechnol
, vol.85
, pp. 41-48
-
-
Kim, M.D.1
Rhee, S.K.2
Seo, J.H.3
-
20
-
-
49349091383
-
Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells
-
Chen JP, Wu KW and Fukuda H, Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells. Appl Biochem Biotechnol 145:59-67 (2008).
-
(2008)
Appl Biochem Biotechnol
, vol.145
, pp. 59-67
-
-
Chen, J.P.1
Wu, K.W.2
Fukuda, H.3
-
21
-
-
84867712304
-
Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
-
Hasunuma T and Kondo A, Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207-1218 (2012).
-
(2012)
Biotechnol Adv
, vol.30
, pp. 1207-1218
-
-
Hasunuma, T.1
Kondo, A.2
-
22
-
-
33645711923
-
Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch
-
Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M and Shioya S, Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol 70:573-579 (2006).
-
(2006)
Appl Microbiol Biotechnol
, vol.70
, pp. 573-579
-
-
Khaw, T.S.1
Katakura, Y.2
Koh, J.3
Kondo, A.4
Ueda, M.5
Shioya, S.6
-
23
-
-
45749092075
-
Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases
-
Kotaka A, Sahara H, Hata Y, Abe Y, Kondo A, Kato-Murai M, Kuroda K and Ueda M, Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Biosci Biotechnol Biochem 72:1376-1379 (2008).
-
(2008)
Biosci Biotechnol Biochem
, vol.72
, pp. 1376-1379
-
-
Kotaka, A.1
Sahara, H.2
Hata, Y.3
Abe, Y.4
Kondo, A.5
Kato-Murai, M.6
Kuroda, K.7
Ueda, M.8
-
24
-
-
4143107093
-
Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase
-
Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H and Kondo A, Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70:5037-5040 (2004).
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 5037-5040
-
-
Shigechi, H.1
Koh, J.2
Fujita, Y.3
Matsumoto, T.4
Bito, Y.5
Ueda, M.6
Satoh, E.7
Fukuda, H.8
Kondo, A.9
-
25
-
-
76649090604
-
Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch
-
Yamada R, Tanaka T, Ogino C, Fukuda H and Kondo A, Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491-1498 (2010).
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 1491-1498
-
-
Yamada, R.1
Tanaka, T.2
Ogino, C.3
Fukuda, H.4
Kondo, A.5
-
26
-
-
77952889294
-
Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain
-
Yamakawa S, Yamada R, Tanaka T, Ogino C and Kondo A, Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 87:109-115 (2010).
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 109-115
-
-
Yamakawa, S.1
Yamada, R.2
Tanaka, T.3
Ogino, C.4
Kondo, A.5
-
27
-
-
17444361892
-
Biotechnological processes for conversion of corn into ethanol
-
Bothast RJ, Schlicher MA, Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19-25 (2005).
-
(2005)
Appl Microbiol Biotechnol
, vol.67
, pp. 19-25
-
-
Bothast, R.J.1
Schlicher, M.A.2
-
28
-
-
84877923003
-
Pinching Pennies
-
Ethanol Producer Magazine September
-
Bevill K, Pinching Pennies. Ethanol Producer Magazine September (2012).
-
(2012)
-
-
Bevill, K.1
-
29
-
-
79954718166
-
Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and b-glucosidase
-
Apiwatanapiwat W, Murata Y, Kosugi A, Yamada R, Kondo A, Arai T, Rugthaworn P and Mori Y, Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and b-glucosidase. Appl Microbiol Biotechnol 90:377-384 (2011).
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 377-384
-
-
Apiwatanapiwat, W.1
Murata, Y.2
Kosugi, A.3
Yamada, R.4
Kondo, A.5
Arai, T.6
Rugthaworn, P.7
Mori, Y.8
-
30
-
-
0036159062
-
Hydrolysis of lignocellulosic materials for ethanol production: a review
-
Sun Y and Cheng J, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83:1-11 (2002).
-
(2002)
Bioresource Technol
, vol.83
, pp. 1-11
-
-
Sun, Y.1
Cheng, J.2
-
31
-
-
10844286172
-
Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems
-
Zhang YH and Lynd LR, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797-824 (2004).
-
(2004)
Biotechnol Bioeng
, vol.88
, pp. 797-824
-
-
Zhang, Y.H.1
Lynd, L.R.2
-
32
-
-
27544459042
-
Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains
-
van Rooyen R, Hahn-Hagerdal B, La Grange DC and Van Zyl WH, Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284-295 (2005).
-
(2005)
J Biotechnol
, vol.120
, pp. 284-295
-
-
van Rooyen, R.1
Hahn-Hagerdal, B.2
La Grange, D.C.3
Van Zyl, W.H.4
-
33
-
-
77957347059
-
Cellodextrin transport in yeast for improved biofuel production
-
Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL and Cate JH, Cellodextrin transport in yeast for improved biofuel production. Science 330:84-86 (2010).
-
(2010)
Science
, vol.330
, pp. 84-86
-
-
Galazka, J.M.1
Tian, C.2
Beeson, W.T.3
Martinez, B.4
Glass, N.L.5
Cate, J.H.6
-
34
-
-
79955553841
-
Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae
-
Sadie CJ, Rose SH, Den Haan R and Van Zyl WH, Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90:1373-1380 (2011).
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 1373-1380
-
-
Sadie, C.J.1
Rose, S.H.2
Den Haan, R.3
Van Zyl, W.H.4
-
35
-
-
84868201333
-
Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
-
Aeling KA, Salmon KA, Laplaza JM, Li L, Headman JR, Hutagalung AH and Picataggio S, Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 39:1597-1604 (2012).
-
(2012)
J Ind Microbiol Biotechnol
, vol.39
, pp. 1597-1604
-
-
Aeling, K.A.1
Salmon, K.A.2
Laplaza, J.M.3
Li, L.4
Headman, J.R.5
Hutagalung, A.H.6
Picataggio, S.7
-
36
-
-
0032999856
-
Yoo YJ and Kang HS, δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol
-
Cho KM, Yoo YJ and Kang HS, δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microbiol Technol 25:23-30 (1999).
-
(1999)
Enzyme Microbiol Technol
, vol.25
, pp. 23-30
-
-
Cho, K.M.1
-
37
-
-
0036793747
-
Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes
-
Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H and Kondo A, Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136-5141 (2002).
-
(2002)
Appl Environ Microbiol
, vol.68
, pp. 5136-5141
-
-
Fujita, Y.1
Takahashi, S.2
Ueda, M.3
Tanaka, A.4
Okada, H.5
Morikawa, Y.6
Kawaguchi, T.7
Arai, M.8
Fukuda, H.9
Kondo, A.10
-
38
-
-
2342638898
-
Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
-
Fujita Y, Ito J, Ueda M, Fukuda H and Kondo A, Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207-1212 (2004).
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 1207-1212
-
-
Fujita, Y.1
Ito, J.2
Ueda, M.3
Fukuda, H.4
Kondo, A.5
-
39
-
-
33845609259
-
Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae
-
Den Haan R, Rose SH, Lynd LR and Van Zyl WH, Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87-94 (2007).
-
(2007)
Metab Eng
, vol.9
, pp. 87-94
-
-
Den Haan, R.1
Rose, S.H.2
Lynd, L.R.3
Van Zyl, W.H.4
-
40
-
-
72449144777
-
Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes
-
Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH and Han SO, Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cells 28:369-373 (2009).
-
(2009)
Mol Cells
, vol.28
, pp. 369-373
-
-
Jeon, E.1
Hyeon, J.E.2
Suh, D.J.3
Suh, Y.W.4
Kim, S.W.5
Song, K.H.6
Han, S.O.7
-
41
-
-
77953675236
-
Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
-
Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H and Kondo A, Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbiol Cell Fact 9:32 (2010).
-
(2010)
Microbiol Cell Fact
, vol.9
, pp. 32
-
-
Yamada, R.1
Taniguchi, N.2
Tanaka, T.3
Ogino, C.4
Fukuda, H.5
Kondo, A.6
-
43
-
-
77952257725
-
Micobial enzyme systems for biomass conversion: emerging paradigms
-
Himmel ME, Xu Q, Luo Y, Ding SY, Lamed R and Bayer EA, Micobial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323-341 (2010).
-
(2010)
Biofuels
, vol.1
, pp. 323-341
-
-
Himmel, M.E.1
Xu, Q.2
Luo, Y.3
Ding, S.Y.4
Lamed, R.5
Bayer, E.A.6
-
44
-
-
0347579849
-
Degradation of cellulose substrates by cellulosome chimeras
-
Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Yand Belaich JP, Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277:49621-49630 (2002).
-
(2002)
Substrate targeting versus proximity of enzyme components. J Biol Chem
, vol.277
, pp. 49621-49630
-
-
Fierobe, H.P.1
Bayer, E.A.2
Tardif, C.3
Czjzek, M.4
Mechaly, A.5
Belaich, A.6
Lamed, R.7
Shoham Yand Belaich, J.P.8
-
45
-
-
33750838967
-
Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum
-
Lu Y, Zhang YH, and Lynd LR, Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Nat Acad Sci USA 103:16165-16169 (2006).
-
(2006)
Proc Nat Acad Sci USA
, vol.103
, pp. 16165-16169
-
-
Lu, Y.1
Zhang, Y.H.2
Lynd, L.R.3
-
46
-
-
67149099176
-
Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains
-
Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, Ueda M, Fukuda H, Doi RH and Kondo A, Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl Environ Microbiol 75:4149-4154 (2009).
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 4149-4154
-
-
Ito, J.1
Kosugi, A.2
Tanaka, T.3
Kuroda, K.4
Shibasaki, S.5
Ogino, C.6
Ueda, M.7
Fukuda, H.8
Doi, R.H.9
Kondo, A.10
-
47
-
-
70349436024
-
Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production
-
Tsai SL, Oh J, Singh S, Chen R and Chen W, Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087-6093 (2009).
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 6087-6093
-
-
Tsai, S.L.1
Oh, J.2
Singh, S.3
Chen, R.4
Chen, W.5
-
48
-
-
76649105430
-
Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
-
Wen F, Sun J and Zhao H, Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251-1260 (2010).
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 1251-1260
-
-
Wen, F.1
Sun, J.2
Zhao, H.3
-
49
-
-
80052569487
-
High level secretion of cellobiohydrolases by Saccharomyces cerevisiae
-
Ilmén M, Den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-aho M, Lagrange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, Van Zyl WH and Penttila M, High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30 (2011).
-
(2011)
Biotechnol Biofuels
, vol.4
, pp. 30
-
-
Ilmén, M.1
Den Haan, R.2
Brevnova, E.3
McBride, J.4
Wiswall, E.5
Froehlich, A.6
Koivula, A.7
Voutilainen, S.P.8
Siika-aho, M.9
Lagrange, D.C.10
Thorngren, N.11
Ahlgren, S.12
Mellon, M.13
Deleault, K.14
Rajgarhia, V.15
Van Zyl, W.H.16
Penttila, M.17
-
50
-
-
84877920459
-
-
Yeast expressing cellulases for simultaneous saccharification and fermentation using cellulose. PCT/US2009/065571
-
McBride JE, Brevnova E, Ghandi C, Mellon M, Froehlich A, Delaault K, Rajgarhia V, Flatt J, Van Zyl WH, Den Haan R, La Grange DC, Rose SH, Penttilä M, Ilmen M, Siika-aho M, Uusitalo J, Hau HH, Rice C, Villari J, Stonehouse EA, Gilbert A, Keating JD, Xu H, Willes D, Shikhare I, Thorngren N, Warner AK and Murphy D, Yeast expressing cellulases for simultaneous saccharification and fermentation using cellulose. PCT/US2009/065571 (2010).
-
(2010)
-
-
McBride, J.E.1
Brevnova, E.2
Ghandi, C.3
Mellon, M.4
Froehlich, A.5
Delaault, K.6
Rajgarhia, V.7
Flatt, J.8
Van Zyl, W.H.9
Den Haan, R.10
La Grange, D.C.11
Rose, S.H.12
Penttilä, M.13
Ilmen, M.14
Siika-aho, M.15
Uusitalo, J.16
Hau, H.H.17
Rice, C.18
Villari, J.19
Stonehouse, E.A.20
Gilbert, A.21
Keating, J.D.22
Xu, H.23
Willes, D.24
Shikhare, I.25
Thorngren, N.26
Warner, A.K.27
Murphy, D.28
more..
-
51
-
-
79960847497
-
Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass
-
Khramtsov N, McDade L, Amerik A, Yu E, Divatia K, Tikhonov A, Minto M, Kabongo-Mubalamate G, Markovic Z, Ruiz-Martinez M and Henck S, Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresource Technol 102:8310-8313 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 8310-8313
-
-
Khramtsov, N.1
McDade, L.2
Amerik, A.3
Yu, E.4
Divatia, K.5
Tikhonov, A.6
Minto, M.7
Kabongo-Mubalamate, G.8
Markovic, Z.9
Ruiz-Martinez, M.10
Henck, S.11
-
52
-
-
0033199811
-
Substrate and enzyme characteristics that limit cellulose hydrolysis
-
Mansfield SD, Mooney C and Saddler JN, Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804-816 (1999).
-
(1999)
Biotechnol Prog
, vol.15
, pp. 804-816
-
-
Mansfield, S.D.1
Mooney, C.2
Saddler, J.N.3
-
53
-
-
1642367502
-
Starch - composition, fine structure and architecture
-
Tester RF, Karkalas J and Qi X, Starch - composition, fine structure and architecture. J Cereal Sci 39:151-165 (2004).
-
(2004)
J Cereal Sci
, vol.39
, pp. 151-165
-
-
Tester, R.F.1
Karkalas, J.2
Qi, X.3
-
54
-
-
84863115517
-
Plant cell walls to ethanol
-
Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA and Wagschal K, Plant cell walls to ethanol. Biochem J 442:241-252 (2012).
-
(2012)
Biochem J
, vol.442
, pp. 241-252
-
-
Jordan, D.B.1
Bowman, M.J.2
Braker, J.D.3
Dien, B.S.4
Hector, R.E.5
Lee, C.C.6
Mertens, J.A.7
Wagschal, K.8
-
56
-
-
42249114507
-
Sustainable liquid biofuels from biomass: the writing's on the walls
-
Gomez LD, Steele-King CG and McQueen-Mason SJ, Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytol 178:473-485 (2008).
-
(2008)
New Phytol
, vol.178
, pp. 473-485
-
-
Gomez, L.D.1
Steele-King, C.G.2
McQueen-Mason, S.J.3
-
57
-
-
77956177381
-
Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes
-
Qing Q, Yang B and Wyman CE, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technol 101:9624-9630 (2010).
-
(2010)
Bioresource Technol
, vol.101
, pp. 9624-9630
-
-
Qing, Q.1
Yang, B.2
Wyman, C.E.3
-
58
-
-
21044450805
-
Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates - evidence for the role of accessory enzymes
-
Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, Okunev O, Gusakov A, Maximenko V, Gregg D, Sinitsyn A and Saddler J, Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates - evidence for the role of accessory enzymes. Enzyme Microbiol Technol 37:175-184 (2005).
-
(2005)
Enzyme Microbiol Technol
, vol.37
, pp. 175-184
-
-
Berlin, A.1
Gilkes, N.2
Kilburn, D.3
Bura, R.4
Markov, A.5
Skomarovsky, A.6
Okunev, O.7
Gusakov, A.8
Maximenko, V.9
Gregg, D.10
Sinitsyn, A.11
Saddler, J.12
-
59
-
-
74149088159
-
Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose
-
Varnai A, Siika-aho M and Viikari L, Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microbiol Technol 46:185-193 (2010).
-
(2010)
Enzyme Microbiol Technol
, vol.46
, pp. 185-193
-
-
Varnai, A.1
Siika-aho, M.2
Viikari, L.3
-
60
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
-
Matsushika A, Inoue H, Kodaki T and Sawayama S, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37-53 (2009).
-
(2009)
Appl Microbiol Biotechnol
, vol.84
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
61
-
-
67649757165
-
Yeast metabolic engineering for hemicellulosic ethanol production
-
Van Vleet JH and Jeffries TW, Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300-306 (2009).
-
(2009)
Curr Opin Biotechnol
, vol.20
, pp. 300-306
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
-
62
-
-
0035650510
-
Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
-
Träff KL, Otero CR, Van Zyl WH and Hahn-Hägerdal B, Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668-5674 (2001).
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 5668-5674
-
-
Träff, K.L.1
Otero, C.R.2
Van Zyl, W.H.3
Hahn-Hägerdal, B.4
-
63
-
-
84869043924
-
Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
-
Zhou H, Cheng JS, Wang B, Fink GR and Stephanopoulos G, Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611-622 (2012).
-
(2012)
Metab Eng
, vol.14
, pp. 611-622
-
-
Zhou, H.1
Cheng, J.S.2
Wang, B.3
Fink, G.R.4
Stephanopoulos, G.5
-
64
-
-
0035650539
-
Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes
-
La Grange DC, Pretorius IS, Claeyssens M and Van Zyl WH, Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512-5519 (2001).
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 5512-5519
-
-
La Grange, D.C.1
Pretorius, I.S.2
Claeyssens, M.3
Van Zyl, W.H.4
-
65
-
-
4644280289
-
Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
-
Katahira S, Fujita Y, Mizuike A, Fukuda H and Kondo A, Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407-5414 (2004).
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 5407-5414
-
-
Katahira, S.1
Fujita, Y.2
Mizuike, A.3
Fukuda, H.4
Kondo, A.5
-
66
-
-
84859517708
-
Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
-
Sakamoto T, Hasunuma T, Hori Y, Yamada R and Kondo A, Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158:203-210 (2012).
-
(2012)
J Biotechnol
, vol.158
, pp. 203-210
-
-
Sakamoto, T.1
Hasunuma, T.2
Hori, Y.3
Yamada, R.4
Kondo, A.5
-
67
-
-
84864080129
-
Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered mini-hemicellulosome
-
Sun J, Wen F, Si T, Xu JH and Zhao H, Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered mini-hemicellulosome. Appl Environ Microbiol 78:3837-3845 (2012).
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 3837-3845
-
-
Sun, J.1
Wen, F.2
Si, T.3
Xu, J.H.4
Zhao, H.5
-
68
-
-
84869878727
-
-
Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. Biotechnol Bioeng
-
Srikrishnan S, Chen W and Da Silva NA, Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. Biotechnol Bioeng 110:275-285 (2013).
-
(2013)
, vol.110
, pp. 275-285
-
-
Srikrishnan, S.1
Chen, W.2
Da Silva, N.A.3
-
69
-
-
55849106319
-
Pretreatment: the key to unlocking low-cost cellulosic ethanol
-
Yang B and Wyman CE, Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bioref 2:26-40 (2008).
-
(2008)
Biofuel Bioprod Bioref
, vol.2
, pp. 26-40
-
-
Yang, B.1
Wyman, C.E.2
-
70
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Liden G and Gorwa-Grauslund MF, Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340-349 (2007).
-
(2007)
J Chem Technol Biotechnol
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hähn-Hägerdal, B.4
Liden, G.5
Gorwa-Grauslund, M.F.6
-
72
-
-
0033030735
-
Comparison for different methods of detoxification of lignocellulose hydrolyzates of spruce
-
Larsson S, Reimann A, Nilvebrant N-O and Jonsson LJ, Comparison for different methods of detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77-79:91-103 (1999).
-
(1999)
Appl Biochem Biotechnol
, vol.77-79
, pp. 91-103
-
-
Larsson, S.1
Reimann, A.2
Nilvebrant, N.-O.3
Jonsson, L.J.4
-
73
-
-
17044443785
-
Fermentation of lignocellulosic hydrolysates for ethanol production
-
Olsson L and Hahn-Hägerdal B, Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microbiol Technol 18:312-331 (1996).
-
(1996)
Enzyme Microbiol Technol
, vol.18
, pp. 312-331
-
-
Olsson, L.1
Hahn-Hägerdal, B.2
-
74
-
-
0028500159
-
Cost analysis of ethanol production from willow using recombinant Escherichia coli
-
von Sivers M, Zacchi G, Olsson L and Hahn-Hagerdal B, Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555-560 (1994).
-
(1994)
Biotechnol Prog
, vol.10
, pp. 555-560
-
-
von Sivers, M.1
Zacchi, G.2
Olsson, L.3
Hahn-Hagerdal, B.4
-
76
-
-
0035233593
-
Metabolic engineering of Saccharomyces cerevisiae for xylose utilization
-
Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, Van Zyl WH, Cordero OR and Jonsson LJ, Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53-84 (2001).
-
(2001)
Adv Biochem Eng Biotechnol
, vol.73
, pp. 53-84
-
-
Hahn-Hägerdal, B.1
Wahlbom, C.F.2
Gardonyi, M.3
Van Zyl, W.H.4
Cordero, O.R.5
Jonsson, L.J.6
-
77
-
-
64849089980
-
Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate
-
Almeida JR, Karhumaa K, Bengtsson O and Gorwa-Grauslund MF, Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresource Technol 100:3674-3677 (2009).
-
(2009)
Bioresource Technol
, vol.100
, pp. 3674-3677
-
-
Almeida, J.R.1
Karhumaa, K.2
Bengtsson, O.3
Gorwa-Grauslund, M.F.4
-
78
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL and Skory CD, Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339-349 (2006).
-
(2006)
Appl Microbiol Biotechnol
, vol.71
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Skory, C.D.6
-
79
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF and Liden G, A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455-464 (2006).
-
(2006)
Yeast
, vol.23
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.2
Modig, T.3
Karhumaa, K.4
Hahn-Hagerdal, B.5
Gorwa-Grauslund, M.F.6
Liden, G.7
-
80
-
-
0035289692
-
Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase
-
Larsson S, Cassland P and Jonsson LJ, Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163-1170 (2001).
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 1163-1170
-
-
Larsson, S.1
Cassland, P.2
Jonsson, L.J.3
-
81
-
-
18844392283
-
Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains
-
Liu ZL, Slininger PJ and Gorsich SW, Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121-124:451-460 (2005).
-
(2005)
Appl Biochem Biotechnol
, vol.121-124
, pp. 451-460
-
-
Liu, Z.L.1
Slininger, P.J.2
Gorsich, S.W.3
-
82
-
-
33846667838
-
Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors
-
Martin C, Marcet M, Almazan O and Jonsson LJ, Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technol 98:1767-1773 (2007).
-
(2007)
Bioresource Technol
, vol.98
, pp. 1767-1773
-
-
Martin, C.1
Marcet, M.2
Almazan, O.3
Jonsson, L.J.4
-
83
-
-
0037394596
-
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
-
Sonderegger M and Sauer U, Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990-1998 (2003).
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 1990-1998
-
-
Sonderegger, M.1
Sauer, U.2
-
84
-
-
0036793662
-
Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs
-
Teunissen A, Dumortier F, Gorwa MF, Bauer J, Tanghe A, Loiez A, Smet P, Van Dijck P and Thevelein JM, Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Appl Environ Microbiol 68:4780-4787 (2002).
-
(2002)
Appl Environ Microbiol
, vol.68
, pp. 4780-4787
-
-
Teunissen, A.1
Dumortier, F.2
Gorwa, M.F.3
Bauer, J.4
Tanghe, A.5
Loiez, A.6
Smet, P.7
Van Dijck, P.8
Thevelein, J.M.9
-
85
-
-
64849104184
-
Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
-
Heer D and Sauer U, Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbiol Biotechnol 1:497-506 (2008).
-
(2008)
Microbiol Biotechnol
, vol.1
, pp. 497-506
-
-
Heer, D.1
Sauer, U.2
-
86
-
-
78149415548
-
Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes
-
Tomas-Pejo E, Ballesteros M, Oliva JM and Olsson L, Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol 37:1211-1220 (2010).
-
(2010)
J Ind Microbiol Biotechnol
, vol.37
, pp. 1211-1220
-
-
Tomas-Pejo, E.1
Ballesteros, M.2
Oliva, J.M.3
Olsson, L.4
-
88
-
-
84864575136
-
Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
-
Koppram R, Albers E and Olsson L, Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5:32 (2012).
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 32
-
-
Koppram, R.1
Albers, E.2
Olsson, L.3
-
89
-
-
79961088508
-
Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor
-
Pinel D, D'Aoust F, del Cardayre SB, Bajwa PK, Lee H and Martin VJ, Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol 77:4736-4743 (2011).
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 4736-4743
-
-
Pinel, D.1
D'Aoust, F.2
del Cardayre, S.B.3
Bajwa, P.K.4
Lee, H.5
Martin, V.J.6
-
90
-
-
43349084131
-
NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae
-
Almeida JR, Roder A, Modig T, Laadan B, Liden G and Gorwa-Grauslund MF, NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939-945 (2008).
-
(2008)
Appl Microbiol Biotechnol
, vol.78
, pp. 939-945
-
-
Almeida, J.R.1
Roder, A.2
Modig, T.3
Laadan, B.4
Liden, G.5
Gorwa-Grauslund, M.F.6
-
91
-
-
57249097175
-
Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
-
Liu ZL, Moon J, Andersh BJ, Slininger PJ and Weber S, Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743-753 (2008).
-
(2008)
Appl Microbiol Biotechnol
, vol.81
, pp. 743-753
-
-
Liu, Z.L.1
Moon, J.2
Andersh, B.J.3
Slininger, P.J.4
Weber, S.5
-
92
-
-
79954648688
-
Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
-
Liu ZL, Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809-825 (2011).
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 809-825
-
-
Liu, Z.L.1
-
93
-
-
77249147339
-
Engineering of protein secretion in yeast: strategies and impact on protein production
-
Idiris A, Tohda H, Kumagai H and Takegawa K, Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403-417 (2010).
-
(2010)
Appl Microbiol Biotechnol
, vol.86
, pp. 403-417
-
-
Idiris, A.1
Tohda, H.2
Kumagai, H.3
Takegawa, K.4
-
94
-
-
84857050299
-
Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae
-
Swinnen S, Thevelein JM and Nevoigt E, Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12:215-227 (2012).
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 215-227
-
-
Swinnen, S.1
Thevelein, J.M.2
Nevoigt, E.3
-
95
-
-
45149104923
-
Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
-
Endo A, Nakamura T, Ando A, Tokuyasu K and Shima J, Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1:3 (2008).
-
(2008)
Biotechnol Biofuels
, vol.1
, pp. 3
-
-
Endo, A.1
Nakamura, T.2
Ando, A.3
Tokuyasu, K.4
Shima, J.5
-
96
-
-
84867704632
-
A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes - factors affecting enzymes, conversion and synergy
-
Van Dyk JS and Pletschke BI, A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes - factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458-1480 (2012).
-
(2012)
Biotechnol Adv
, vol.30
, pp. 1458-1480
-
-
Van Dyk, J.S.1
Pletschke, B.I.2
-
97
-
-
78149412632
-
Deactivation of cellulases by phenols
-
Ximenes E, Kim Y, Mosier N, Dien B and Ladisch M, Deactivation of cellulases by phenols. Enzyme Microbiol Technol 48:54-60 (2011).
-
(2011)
Enzyme Microbiol Technol
, vol.48
, pp. 54-60
-
-
Ximenes, E.1
Kim, Y.2
Mosier, N.3
Dien, B.4
Ladisch, M.5
-
98
-
-
79952532918
-
Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera
-
Gurgu L, Lafraya A, Polaina J and Marin-Navarro J, Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresource Technol 102:5229-5236 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 5229-5236
-
-
Gurgu, L.1
Lafraya, A.2
Polaina, J.3
Marin-Navarro, J.4
-
99
-
-
33845958175
-
The unfolded protein response
-
Schroder M, The unfolded protein response. Mol Biotechnol 34:279-290 (2006).
-
(2006)
Mol Biotechnol
, vol.34
, pp. 279-290
-
-
Schroder, M.1
-
100
-
-
33847181688
-
A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins
-
Wentz AE and Shusta EV, A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl Environ Microbiol 73:1189-1198 (2007).
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 1189-1198
-
-
Wentz, A.E.1
Shusta, E.V.2
-
101
-
-
0036750868
-
Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae
-
Kauffman KJ, Pridgen EM, Doyle FJ, III, Dhurjati PS and Robinson AS, Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol Prog 18:942-950 (2002).
-
(2002)
Biotechnol Prog
, vol.18
, pp. 942-950
-
-
Kauffman, K.J.1
Pridgen, E.M.2
Doyle III, F.J.3
Dhurjati, P.S.4
Robinson, A.S.5
-
102
-
-
0031879861
-
Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments
-
Shusta EV, Raines RT, Pluckthun A and Wittrup KD, Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16:773-777 (1998).
-
(1998)
Nat Biotechnol
, vol.16
, pp. 773-777
-
-
Shusta, E.V.1
Raines, R.T.2
Pluckthun, A.3
Wittrup, K.D.4
-
103
-
-
0036121431
-
Overproduction of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha
-
van der Heide M, Hollenberg CP, van der Klei I and Veenhuis M, Overproduction of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha. Appl Microbiol Biotechnol 58:487-494 (2002).
-
(2002)
Appl Microbiol Biotechnol
, vol.58
, pp. 487-494
-
-
van der Heide, M.1
Hollenberg, C.P.2
van der Klei, I.3
Veenhuis, M.4
-
104
-
-
84870760576
-
-
Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Appl Energy.
-
Kroukamp H, Den Haan R, Van Wyk N and Van Zyl WH, Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Appl Energy 102:150-156 (2013).
-
(2013)
, vol.102
, pp. 150-156
-
-
Kroukamp, H.1
Den Haan, R.2
Van Wyk, N.3
Van Zyl, W.H.4
-
105
-
-
79956073707
-
Revealing the genetic structure of a trait by sequencing a population under selection
-
Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M, Zia A, Simpson JT, Quail MA, Moses A, Louis EJ, Durbin R and Liti G, Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res 21:1131-1138 (2011).
-
(2011)
Genome Res
, vol.21
, pp. 1131-1138
-
-
Parts, L.1
Cubillos, F.A.2
Warringer, J.3
Jain, K.4
Salinas, F.5
Bumpstead, S.J.6
Molin, M.7
Zia, A.8
Simpson, J.T.9
Quail, M.A.10
Moses, A.11
Louis, E.J.12
Durbin, R.13
Liti, G.14
-
106
-
-
84860571592
-
Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis
-
Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquie-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F and Thevelein JM, Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22:975-984 (2012).
-
(2012)
Genome Res
, vol.22
, pp. 975-984
-
-
Swinnen, S.1
Schaerlaekens, K.2
Pais, T.3
Claesen, J.4
Hubmann, G.5
Yang, Y.6
Demeke, M.7
Foulquie-Moreno, M.R.8
Goovaerts, A.9
Souvereyns, K.10
Clement, L.11
Dumortier, F.12
Thevelein, J.M.13
-
107
-
-
70350323710
-
Consolidated bioprocessing for biofuel production
-
Casolaro K, Consolidated bioprocessing for biofuel production. Ind Bioprocess 31:2 (2009).
-
(2009)
Ind Bioprocess
, vol.31
, pp. 2
-
-
Casolaro, K.1
-
110
-
-
27744499157
-
Production of ethanol from biomass - research in Sweden
-
Galbe M, Liden G and Zacchi G, Production of ethanol from biomass - research in Sweden. J Sci Ind Res India 64:905-919 (2005).
-
(2005)
J Sci Ind Res India
, vol.64
, pp. 905-919
-
-
Galbe, M.1
Liden, G.2
Zacchi, G.3
-
111
-
-
79953281832
-
Comparing biological and thermochemical processing of sugarcane bagasse: an energy balance perspective
-
Leibbrandt NH, Knoetze JH and Görgens JF, Comparing biological and thermochemical processing of sugarcane bagasse: an energy balance perspective. Biomass Bioenergy 35:2117-2126 (2011).
-
(2011)
Biomass Bioenergy
, vol.35
, pp. 2117-2126
-
-
Leibbrandt, N.H.1
Knoetze, J.H.2
Görgens, J.F.3
-
112
-
-
74349084291
-
Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies
-
Banerjee S, Mudliar S, Sen R and Giri B, Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Bioref 4:77-93 (2009).
-
(2009)
Biofuels Bioprod Bioref
, vol.4
, pp. 77-93
-
-
Banerjee, S.1
Mudliar, S.2
Sen, R.3
Giri, B.4
-
113
-
-
64749101374
-
Coproduction of ethanol and power from switchgrass
-
Laser M, Jin H, Jayawardhana K, Dale BE and Lynd LR, Coproduction of ethanol and power from switchgrass. Biofuels Bioprod Bioref 3:195-218 (2009).
-
(2009)
Biofuels Bioprod Bioref
, vol.3
, pp. 195-218
-
-
Laser, M.1
Jin, H.2
Jayawardhana, K.3
Dale, B.E.4
Lynd, L.R.5
-
114
-
-
43249092686
-
Techno-economic evaluation of bioethanol production from three different lignocellulosic materials
-
Sassner P, Galbe M and Zacchi G, Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg 32:422-430 (2008).
-
(2008)
Biomass Bioenerg
, vol.32
, pp. 422-430
-
-
Sassner, P.1
Galbe, M.2
Zacchi, G.3
|