메뉴 건너뛰기




Volumn 8, Issue 4, 2013, Pages

Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a Chemogenomics Approach

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BINDING AFFINITY; CHEMOGENOMICS; COMPUTER PROGRAM; DRUG INTERACTION; DRUG PROTEIN BINDING; DRUG TARGET ASSOCIATION; GENOMICS; PREDICTION; QUANTITATIVE ANALYSIS; RANDOM FOREST; STATISTICAL MODEL; VALIDITY;

EID: 84875927922     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0057680     Document Type: Article
Times cited : (33)

References (72)
  • 4
    • 77949655881 scopus 로고    scopus 로고
    • Novel opportunities for computational biology and sociology in drug discovery: Corrected paper
    • Yao L, Evans JA, Rzhetsky A, (2009) Novel opportunities for computational biology and sociology in drug discovery: Corrected paper. Trends in Biotechnology 28: 161-170.
    • (2009) Trends in Biotechnology , vol.28 , pp. 161-170
    • Yao, L.1    Evans, J.A.2    Rzhetsky, A.3
  • 5
    • 4344668661 scopus 로고    scopus 로고
    • Drug repositioning: identifying and developing new uses for existing drugs
    • Ashburn TT, Thor KB, (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3: 673-683.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 673-683
    • Ashburn, T.T.1    Thor, K.B.2
  • 6
    • 79960796417 scopus 로고    scopus 로고
    • Exploiting drug-disease relationships for computational drug repositioning
    • Dudley JT, Deshpande T, Butte AJ, (2011) Exploiting drug-disease relationships for computational drug repositioning. Briefings in Bioinformatics 12: 303-311.
    • (2011) Briefings in Bioinformatics , vol.12 , pp. 303-311
    • Dudley, J.T.1    Deshpande, T.2    Butte, A.J.3
  • 8
    • 79960797592 scopus 로고    scopus 로고
    • Editorial: Computational methods for drug repurposing
    • Sanseau P, Koehler J, (2011) Editorial: Computational methods for drug repurposing. Briefings in Bioinformatics 12: 301-302.
    • (2011) Briefings in Bioinformatics , vol.12 , pp. 301-302
    • Sanseau, P.1    Koehler, J.2
  • 9
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi A-L, Oltvai ZN, (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101-113.
    • (2004) Nat Rev Genet , vol.5 , pp. 101-113
    • Barabasi, A.-L.1    Oltvai, Z.N.2
  • 10
    • 0025880971 scopus 로고
    • Drug-target interactions: only the first step in the commitment to a programmed cell death?
    • Dive C, Hickman JA, (1991) Drug-target interactions: only the first step in the commitment to a programmed cell death? Br J Cancer 64: 192-196.
    • (1991) Br J Cancer , vol.64 , pp. 192-196
    • Dive, C.1    Hickman, J.A.2
  • 11
    • 68949119585 scopus 로고    scopus 로고
    • The topology of drug-target interaction networks: implicit dependence on drug properties and target families
    • Mestres J, Gregori-Puigjane E, Valverde S, Sole RV, (2009) The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Molecular BioSystems 5: 1051-1057.
    • (2009) Molecular BioSystems , vol.5 , pp. 1051-1057
    • Mestres, J.1    Gregori-Puigjane, E.2    Valverde, S.3    Sole, R.V.4
  • 13
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P, (2008) Drug target identification using side-effect similarity. Science 321: 263-266.
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1    Kuhn, M.2    Gavin, A.C.3    Jensen, L.J.4    Bork, P.5
  • 15
    • 79959926410 scopus 로고    scopus 로고
    • DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome
    • Luo H, Chen J, Shi L, Mikailov M, Zhu H, et al. (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Research 39: W492-W498.
    • (2011) Nucleic Acids Research , vol.39
    • Luo, H.1    Chen, J.2    Shi, L.3    Mikailov, M.4    Zhu, H.5
  • 18
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: an improved chemogenomics approach
    • Jacob L, Vert JP, (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24: 2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.P.2
  • 19
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • Xia Z, Wu L-Y, Zhou X, Wong S (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Systems Biology (Suppl 2): S6.
    • (2010) BMC Systems Biology , Issue.SUPPL. 2
    • Xia, Z.1    Wu, L.-Y.2    Zhou, X.3    Wong, S.4
  • 20
    • 77950448057 scopus 로고    scopus 로고
    • Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features
    • He Z, Zhang J, Shi X-H, Hu L-L, Kong X, et al. (2010) Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features. PLoS ONE 5: e9603.
    • (2010) PLoS ONE , vol.5
    • He, Z.1    Zhang, J.2    Shi, X.-H.3    Hu, L.-L.4    Kong, X.5
  • 21
    • 79953853363 scopus 로고    scopus 로고
    • Predicting drug-target interactions based on an improved semi-supervised learning approach
    • Yu W, Cheng X, Li Z, Jiang Z, (2011) Predicting drug-target interactions based on an improved semi-supervised learning approach. Drug Development Research 72: 219-224.
    • (2011) Drug Development Research , vol.72 , pp. 219-224
    • Yu, W.1    Cheng, X.2    Li, Z.3    Jiang, Z.4
  • 22
    • 82355168473 scopus 로고    scopus 로고
    • Computational Screening for Active Compounds Targeting Protein Sequences: Methodology and Experimental Validation
    • Wang F, Liu D, Wang H, Luo C, Zheng M, et al. (2011) Computational Screening for Active Compounds Targeting Protein Sequences: Methodology and Experimental Validation. Journal of Chemical Information and Modeling 51: 2821-2828.
    • (2011) Journal of Chemical Information and Modeling , vol.51 , pp. 2821-2828
    • Wang, F.1    Liu, D.2    Wang, H.3    Luo, C.4    Zheng, M.5
  • 23
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Ben-Hur A, Noble WS, (2005) Kernel methods for predicting protein-protein interactions. Bioinformatics 21: i38-i46.
    • (2005) Bioinformatics , vol.21
    • Ben-Hur, A.1    Noble, W.S.2
  • 24
    • 52749098733 scopus 로고    scopus 로고
    • Virtual screening of GPCRs: An in silico chemogenomics approach
    • Jacob L, Hoffmann B, Stoven V, Vert J-P, (2008) Virtual screening of GPCRs: An in silico chemogenomics approach. BMC Bioinformatics 9: 363.
    • (2008) BMC Bioinformatics , vol.9 , pp. 363
    • Jacob, L.1    Hoffmann, B.2    Stoven, V.3    Vert, J.-P.4
  • 25
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley K, Yamanishi Y, (2009) Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25: 2397-2403.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 26
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug-target interaction
    • van Laarhoven T, Nabuurs SB, Marchiori E, (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27: 3036-3043.
    • (2011) Bioinformatics , vol.27 , pp. 3036-3043
    • van Laarhoven, T.1    Nabuurs, S.B.2    Marchiori, E.3
  • 27
    • 84855840733 scopus 로고    scopus 로고
    • Target-drug interactions: first principles and their application to drug discovery
    • Nunez S, Venhorst J, Kruse CG, (2011) Target-drug interactions: first principles and their application to drug discovery. Drug Discovery Today 17: 10-22.
    • (2011) Drug Discovery Today , vol.17 , pp. 10-22
    • Nunez, S.1    Venhorst, J.2    Kruse, C.G.3
  • 28
    • 1942453243 scopus 로고    scopus 로고
    • Ligand efficiency: a useful metric for lead selection
    • Hopkins AL, Groom CR, Alex A, (2004) Ligand efficiency: a useful metric for lead selection. Drug Discovery Today 9: 430-431.
    • (2004) Drug Discovery Today , vol.9 , pp. 430-431
    • Hopkins, A.L.1    Groom, C.R.2    Alex, A.3
  • 29
    • 80053331281 scopus 로고    scopus 로고
    • A call to arms: what you can do for computational drug discovery
    • Carlson H, Dunbar JJ, (2011) A call to arms: what you can do for computational drug discovery. J Chem Inf Model 51: 2025-2026.
    • (2011) J Chem Inf Model , vol.51 , pp. 2025-2026
    • Carlson, H.1    Dunbar, J.J.2
  • 30
    • 1842532337 scopus 로고    scopus 로고
    • Chemogenomics: an emerging strategy for rapid target and drug discovery
    • Bredel M, Jacoby E, (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5: 262-275.
    • (2004) Nat Rev Genet , vol.5 , pp. 262-275
    • Bredel, M.1    Jacoby, E.2
  • 31
    • 0037388166 scopus 로고    scopus 로고
    • Cell and tumor classification using gene expression data: Construction of forests
    • Zhang H, Yu C-Y, Singer B, (2003) Cell and tumor classification using gene expression data: Construction of forests. Proceedings of the National Academy of Sciences 100: 4168-4172.
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , pp. 4168-4172
    • Zhang, H.1    Yu, C.-Y.2    Singer, B.3
  • 32
    • 2542596956 scopus 로고    scopus 로고
    • Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling
    • Li X, Rao S, Wang Y, Gong B, (2004) Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Research 32: 2685-2694.
    • (2004) Nucleic Acids Research , vol.32 , pp. 2685-2694
    • Li, X.1    Rao, S.2    Wang, Y.3    Gong, B.4
  • 33
    • 16444381830 scopus 로고    scopus 로고
    • Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma
    • Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S, (2004) Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol 18: 547-557.
    • (2004) Mod Pathol , vol.18 , pp. 547-557
    • Shi, T.1    Seligson, D.2    Belldegrun, A.S.3    Palotie, A.4    Horvath, S.5
  • 34
    • 58049220320 scopus 로고    scopus 로고
    • Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature
    • Wu J, Liu H, Duan X, Ding Y, Wu H, et al. (2009) Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics 25: 30-35.
    • (2009) Bioinformatics , vol.25 , pp. 30-35
    • Wu, J.1    Liu, H.2    Duan, X.3    Ding, Y.4    Wu, H.5
  • 35
    • 35148824614 scopus 로고    scopus 로고
    • Network pharmacology
    • Hopkins AL, (2007) Network pharmacology. Nat Biotech 25: 1110-1111.
    • (2007) Nat Biotech , vol.25 , pp. 1110-1111
    • Hopkins, A.L.1
  • 36
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: the next paradigm in drug discovery
    • Hopkins AL, (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4: 682-690.
    • (2008) Nat Chem Biol , vol.4 , pp. 682-690
    • Hopkins, A.L.1
  • 38
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T, (2006) An introduction to ROC analysis. Pattern Recognition Letters 27: 861-874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 39
    • 27544491192 scopus 로고    scopus 로고
    • ROCR: visualizing classifier performance in R. Bioinformatics
    • Sing T, Sander O, Beerenwinkel N, Lengauer T, (2005) ROCR: visualizing classifier performance in R. Bioinformatics. 21: 3940-3941.
    • (2005) , vol.21 , pp. 3940-3941
    • Sing, T.1    Sander, O.2    Beerenwinkel, N.3    Lengauer, T.4
  • 40
    • 84861813244 scopus 로고    scopus 로고
    • Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations
    • Boulesteix A-L, Bender A, Lorenzo Bermejo J, Strobl C, (2011) Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Briefings in Bioinformatics 13: 292-304.
    • (2011) Briefings in Bioinformatics , vol.13 , pp. 292-304
    • Boulesteix, A.-L.1    Bender, A.2    Lorenzo Bermejo, J.3    Strobl, C.4
  • 41
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using random decision forest framework
    • Chen X-W, Liu M, (2005) Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21: 4394-4400.
    • (2005) Bioinformatics , vol.21 , pp. 4394-4400
    • Chen, X.-W.1    Liu, M.2
  • 42
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, Alvarez de Andres S, (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7: 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez de Andres, S.2
  • 46
    • 0042029747 scopus 로고    scopus 로고
    • Atypical antipsychotic drug actions: unitary or multiple mechanisms for 'atypicality'?
    • Roth BL, Sheffler D, Potkin SG, (2003) Atypical antipsychotic drug actions: unitary or multiple mechanisms for 'atypicality'? Clinical Neuroscience Research 3: 108-117.
    • (2003) Clinical Neuroscience Research , vol.3 , pp. 108-117
    • Roth, B.L.1    Sheffler, D.2    Potkin, S.G.3
  • 47
    • 0027452629 scopus 로고
    • The opioid receptor binding of dezocine, morphine, fentanyl, butorphanol and nalbuphine
    • Chen J-C, Smith ER, Cahill M, Cohen R, Fishman JB, (1993) The opioid receptor binding of dezocine, morphine, fentanyl, butorphanol and nalbuphine. Life Sciences 52: 389-396.
    • (1993) Life Sciences , vol.52 , pp. 389-396
    • Chen, J.-C.1    Smith, E.R.2    Cahill, M.3    Cohen, R.4    Fishman, J.B.5
  • 48
    • 0028970418 scopus 로고
    • The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine
    • Kristensen K, Christensen CB, Christrup LL, (1994) The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sciences 56: 45-50.
    • (1994) Life Sciences , vol.56 , pp. 45-50
    • Kristensen, K.1    Christensen, C.B.2    Christrup, L.L.3
  • 49
    • 4644271084 scopus 로고    scopus 로고
    • Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia
    • Roth BL, Sheffler DJ, Kroeze WK, (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3: 353-359.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 353-359
    • Roth, B.L.1    Sheffler, D.J.2    Kroeze, W.K.3
  • 50
    • 10744226540 scopus 로고    scopus 로고
    • H1-histamine Receptor Affinity Predicts Short-term Weight Gain for Typical and Atypical Antipsychotic Drugs
    • Goudie AJ, Halford JCG, Dovey TM, Cooper GD, Neill JC, (2003) H1-histamine Receptor Affinity Predicts Short-term Weight Gain for Typical and Atypical Antipsychotic Drugs. Neuropsychopharmacology 28: 2209-2209.
    • (2003) Neuropsychopharmacology , vol.28 , pp. 2209
    • Goudie, A.J.1    Halford, J.C.G.2    Dovey, T.M.3    Cooper, G.D.4    Neill, J.C.5
  • 51
    • 33748751182 scopus 로고    scopus 로고
    • Chemogenomics: structuring the drug discovery process to gene families
    • Harris CJ, Stevens AP, (2006) Chemogenomics: structuring the drug discovery process to gene families. Drug Discovery Today 11: 880-888.
    • (2006) Drug Discovery Today , vol.11 , pp. 880-888
    • Harris, C.J.1    Stevens, A.P.2
  • 52
    • 4043121114 scopus 로고    scopus 로고
    • Computational chemogenomics approaches to systematic knowledge-based drug discovery
    • Mestres J, (2004) Computational chemogenomics approaches to systematic knowledge-based drug discovery. Current opinion in drug discovery & development 7: 304-313.
    • (2004) Current Opinion in Drug Discovery & Development , vol.7 , pp. 304-313
    • Mestres, J.1
  • 53
    • 34548317031 scopus 로고    scopus 로고
    • Chemogenomic approaches to rational drug design
    • Rognan D, (2007) Chemogenomic approaches to rational drug design. British Journal of Pharmacology 152: 38-52.
    • (2007) British Journal of Pharmacology , vol.152 , pp. 38-52
    • Rognan, D.1
  • 55
    • 34548319109 scopus 로고    scopus 로고
    • Chemogenomic approaches to drug discovery: similar receptors bind similar ligands
    • Klabunde T, (2007) Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. British Journal of Pharmacology 152: 5-7.
    • (2007) British Journal of Pharmacology , vol.152 , pp. 5-7
    • Klabunde, T.1
  • 56
    • 79959621970 scopus 로고    scopus 로고
    • Predicting selective drug targets in cancer through metabolic networks
    • Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, et al. (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7: 501.
    • (2011) Mol Syst Biol , vol.7 , pp. 501
    • Folger, O.1    Jerby, L.2    Frezza, C.3    Gottlieb, E.4    Ruppin, E.5
  • 57
    • 33749335282 scopus 로고    scopus 로고
    • The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease
    • Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, et al. (2006) The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 313: 1929-1935.
    • (2006) Science , vol.313 , pp. 1929-1935
    • Lamb, J.1    Crawford, E.D.2    Peck, D.3    Modell, J.W.4    Blat, I.C.5
  • 58
    • 33845876254 scopus 로고    scopus 로고
    • The Connectivity Map: a new tool for biomedical research
    • Lamb J, (2007) The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 7: 54-60.
    • (2007) Nat Rev Cancer , vol.7 , pp. 54-60
    • Lamb, J.1
  • 59
    • 81755176078 scopus 로고    scopus 로고
    • Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development
    • van Westen GJP, Wegner JK, Geluykens P, Kwanten L, Vereycken I, et al. (2011) Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development. PLoS ONE 6: e27518.
    • (2011) PLoS ONE , vol.6
    • van Westen, G.J.P.1    Wegner, J.K.2    Geluykens, P.3    Kwanten, L.4    Vereycken, I.5
  • 60
    • 0036557848 scopus 로고    scopus 로고
    • The Construction and Assessment of a Statistical Model for the Prediction of Protein Assay Data
    • Pittman J, Sacks J, Young SS, (2002) The Construction and Assessment of a Statistical Model for the Prediction of Protein Assay Data. Journal of Chemical Information and Computer Sciences 42: 729-741.
    • (2002) Journal of Chemical Information and Computer Sciences , vol.42 , pp. 729-741
    • Pittman, J.1    Sacks, J.2    Young, S.S.3
  • 61
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
    • Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK, (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Research 35: D198-D201.
    • (2007) Nucleic Acids Research , vol.35
    • Liu, T.1    Lin, Y.2    Wen, X.3    Jorissen, R.N.4    Gilson, M.K.5
  • 63
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3.0: a comprehensive resource for 'Omics' research on drugs
    • Knox C, Law V, Jewison T, Liu P, Ly S, et al. (2010) DrugBank 3.0: a comprehensive resource for 'Omics' research on drugs. Nucleic Acids Research 39: D1035-D1041.
    • (2010) Nucleic Acids Research , vol.39
    • Knox, C.1    Law, V.2    Jewison, T.3    Liu, P.4    Ly, S.5
  • 64
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M, (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24: i232-i240.
    • (2008) Bioinformatics , vol.24
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3    Honda, W.4    Kanehisa, M.5
  • 65
    • 33644873904 scopus 로고    scopus 로고
    • AffinDB: a freely accessible database of affinities for protein- ligand complexes from the PDB
    • Block P, Sotriffer CA, Dramburg I, Klebe G, (2005) AffinDB: a freely accessible database of affinities for protein- ligand complexes from the PDB. Nucleic Acids Research 34: D522-D526.
    • (2005) Nucleic Acids Research , vol.34
    • Block, P.1    Sotriffer, C.A.2    Dramburg, I.3    Klebe, G.4
  • 68
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L, (2001) Random forests. Machine Learning 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.