-
1
-
-
0035997368
-
DNA replication in eukaryotic cells
-
Bell S.P., Dutta A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 2002, 71:333-374.
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 333-374
-
-
Bell, S.P.1
Dutta, A.2
-
2
-
-
77953632048
-
Eukaryotic chromosome DNA replication: where, when, and how?
-
Masai H., et al. Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem. 2011, 79:89-130.
-
(2011)
Annu. Rev. Biochem.
, vol.79
, pp. 89-130
-
-
Masai, H.1
-
3
-
-
33745925880
-
Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
-
Moyer S.E., et al. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10236-10241.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10236-10241
-
-
Moyer, S.E.1
-
4
-
-
0036190356
-
Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45
-
Wohlschlegel J.A., et al. Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol. Cell 2002, 9:233-240.
-
(2002)
Mol. Cell
, vol.9
, pp. 233-240
-
-
Wohlschlegel, J.A.1
-
5
-
-
84862786939
-
Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components
-
Kanke M., et al. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J. 2012, 31:2182-2194.
-
(2012)
EMBO J.
, vol.31
, pp. 2182-2194
-
-
Kanke, M.1
-
6
-
-
84860527731
-
Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation
-
van Deursen F., et al. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J. 2012, 31:2195-2206.
-
(2012)
EMBO J.
, vol.31
, pp. 2195-2206
-
-
van Deursen, F.1
-
7
-
-
84857370681
-
Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS
-
Watase G., et al. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr. Biol. 2012, 22:343-349.
-
(2012)
Curr. Biol.
, vol.22
, pp. 343-349
-
-
Watase, G.1
-
8
-
-
79959957543
-
Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases
-
Heller R.C., et al. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 2011, 146:80-91.
-
(2011)
Cell
, vol.146
, pp. 80-91
-
-
Heller, R.C.1
-
9
-
-
0026607376
-
Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae
-
Solomon N.A., et al. Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae. Yeast 1992, 8:273-289.
-
(1992)
Yeast
, vol.8
, pp. 273-289
-
-
Solomon, N.A.1
-
10
-
-
0030974160
-
A lesion in the DNA replication initiation factor Mcm10 induces pausing of elongation forks through chromosomal replication origins in Saccharomyces cerevisiae
-
Merchant A.M., et al. A lesion in the DNA replication initiation factor Mcm10 induces pausing of elongation forks through chromosomal replication origins in Saccharomyces cerevisiae. Mol. Cell. Biol. 1997, 17:3261-3271.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 3261-3271
-
-
Merchant, A.M.1
-
11
-
-
6344284782
-
Mcm10 regulates the stability and chromatin association of DNA polymerase-α
-
Ricke R.M., Bielinsky A.K. Mcm10 regulates the stability and chromatin association of DNA polymerase-α. Mol. Cell 2004, 16:173-185.
-
(2004)
Mol. Cell
, vol.16
, pp. 173-185
-
-
Ricke, R.M.1
Bielinsky, A.K.2
-
12
-
-
0141856295
-
Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding
-
Gregan J., et al. Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol. Biol. Cell 2003, 14:3876-3887.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 3876-3887
-
-
Gregan, J.1
-
13
-
-
2942607401
-
Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae
-
Sawyer S.L., et al. Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. J. Mol. Biol. 2004, 340:195-202.
-
(2004)
J. Mol. Biol.
, vol.340
, pp. 195-202
-
-
Sawyer, S.L.1
-
14
-
-
26444510880
-
Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast
-
Yang X., et al. Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast. BMC Mol. Biol. 2005, 6:13.
-
(2005)
BMC Mol. Biol.
, vol.6
, pp. 13
-
-
Yang, X.1
-
15
-
-
1942501704
-
Primer utilization by DNA polymerase α-primase is influenced by its interaction with Mcm10p
-
Fien K., et al. Primer utilization by DNA polymerase α-primase is influenced by its interaction with Mcm10p. J. Biol. Chem. 2004, 279:16144-16153.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 16144-16153
-
-
Fien, K.1
-
16
-
-
41249101739
-
Domain architecture and biochemical characterization of vertebrate Mcm10
-
Robertson P.D., et al. Domain architecture and biochemical characterization of vertebrate Mcm10. J. Biol. Chem. 2008, 283:3338-3348.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 3338-3348
-
-
Robertson, P.D.1
-
17
-
-
57049140461
-
Structural basis for DNA binding by replication initiator Mcm10
-
Warren E.M., et al. Structural basis for DNA binding by replication initiator Mcm10. Structure 2008, 16:1892-1901.
-
(2008)
Structure
, vol.16
, pp. 1892-1901
-
-
Warren, E.M.1
-
18
-
-
69949144606
-
Novel DNA binding properties of the Mcm10 protein from Saccharomyces cerevisiae
-
Eisenberg S., et al. Novel DNA binding properties of the Mcm10 protein from Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284:25412-25420.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 25412-25420
-
-
Eisenberg, S.1
-
19
-
-
69949136023
-
Physical interactions between Mcm10, DNA, and DNA polymerase α
-
Warren E.M., et al. Physical interactions between Mcm10, DNA, and DNA polymerase α. J. Biol. Chem. 2009, 284:24662-24672.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 24662-24672
-
-
Warren, E.M.1
-
20
-
-
77954950421
-
Solution NMR structure of the C-terminal DNA binding domain of Mcm10 reveals a conserved MCM motif
-
Robertson P.D., et al. Solution NMR structure of the C-terminal DNA binding domain of Mcm10 reveals a conserved MCM motif. J. Biol. Chem. 2010, 285:22942-22949.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22942-22949
-
-
Robertson, P.D.1
-
21
-
-
70350751416
-
Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
-
Remus D., et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009, 139:719-730.
-
(2009)
Cell
, vol.139
, pp. 719-730
-
-
Remus, D.1
-
22
-
-
33645717628
-
GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
-
Gambus A., et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 2006, 8:358-366.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 358-366
-
-
Gambus, A.1
-
23
-
-
80052942659
-
Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase
-
Fu Y.V., et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 2011, 146:931-941.
-
(2011)
Cell
, vol.146
, pp. 931-941
-
-
Fu, Y.V.1
-
24
-
-
84875529074
-
Structural biology of replication initiation factor Mcm10
-
Du W., et al. Structural biology of replication initiation factor Mcm10. Subcell. Biochem. 2012, 62:197-216.
-
(2012)
Subcell. Biochem.
, vol.62
, pp. 197-216
-
-
Du, W.1
-
25
-
-
70350573964
-
MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication
-
Xu X., et al. MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J. 2009, 28:3005-3014.
-
(2009)
EMBO J.
, vol.28
, pp. 3005-3014
-
-
Xu, X.1
-
26
-
-
20444380748
-
Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome
-
Sangrithi M.N., et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 2005, 121:887-898.
-
(2005)
Cell
, vol.121
, pp. 887-898
-
-
Sangrithi, M.N.1
-
27
-
-
33745471225
-
The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication
-
Matsuno K., et al. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication. Mol. Cell. Biol. 2006, 26:4843-4852.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 4843-4852
-
-
Matsuno, K.1
-
28
-
-
84866930447
-
The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif
-
Ohlenschlager O., et al. The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res. 2012, 40:8309-8324.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 8309-8324
-
-
Ohlenschlager, O.1
-
29
-
-
34548823811
-
Mcm10 and And-1/CTF4 recruit DNA polymerase α to chromatin for initiation of DNA replication
-
Zhu W., et al. Mcm10 and And-1/CTF4 recruit DNA polymerase α to chromatin for initiation of DNA replication. Genes Dev. 2007, 21:2288-2299.
-
(2007)
Genes Dev.
, vol.21
, pp. 2288-2299
-
-
Zhu, W.1
-
30
-
-
33745865146
-
A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-α in budding yeast
-
Ricke R.M., Bielinsky A.K. A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-α in budding yeast. J. Biol. Chem. 2006, 281:18414-18425.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 18414-18425
-
-
Ricke, R.M.1
Bielinsky, A.K.2
-
31
-
-
34948895494
-
Human Mcm10 regulates the catalytic subunit of DNA polymerase-α and prevents DNA damage during replication
-
Chattopadhyay S., Bielinsky A.K. Human Mcm10 regulates the catalytic subunit of DNA polymerase-α and prevents DNA damage during replication. Mol. Biol. Cell 2007, 18:4085-4095.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 4085-4095
-
-
Chattopadhyay, S.1
Bielinsky, A.K.2
-
32
-
-
77953493199
-
Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM
-
Wawrousek K.E., et al. Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM. Cell Cycle 2010, 9:1156-1166.
-
(2010)
Cell Cycle
, vol.9
, pp. 1156-1166
-
-
Wawrousek, K.E.1
-
33
-
-
78751609579
-
Multiple functions for Drosophila Mcm10 suggested through analysis of two Mcm10 mutant alleles
-
Apger J., et al. Multiple functions for Drosophila Mcm10 suggested through analysis of two Mcm10 mutant alleles. Genetics 2010, 185:1151-1165.
-
(2010)
Genetics
, vol.185
, pp. 1151-1165
-
-
Apger, J.1
-
34
-
-
79953668023
-
Drosophila Ctf4 is essential for efficient DNA replication and normal cell cycle progression
-
Gosnell J.A., Christensen T.W. Drosophila Ctf4 is essential for efficient DNA replication and normal cell cycle progression. BMC Mol. Biol. 2011, 12:13.
-
(2011)
BMC Mol. Biol.
, vol.12
, pp. 13
-
-
Gosnell, J.A.1
Christensen, T.W.2
-
35
-
-
73549091452
-
Alternative mechanisms for coordinating polymerase α and MCM helicase
-
Lee C., et al. Alternative mechanisms for coordinating polymerase α and MCM helicase. Mol. Cell. Biol. 2010, 30:423-435.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 423-435
-
-
Lee, C.1
-
36
-
-
77951879322
-
Ctf4p facilitates Mcm10p to promote DNA replication in budding yeast
-
Wang J., et al. Ctf4p facilitates Mcm10p to promote DNA replication in budding yeast. Biochem. Biophys. Res. Commun. 2010, 395:336-341.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.395
, pp. 336-341
-
-
Wang, J.1
-
37
-
-
77956660837
-
Ubc4 and Not4 regulate steady-state levels of DNA polymerase-α to promote efficient and accurate DNA replication
-
Haworth J., et al. Ubc4 and Not4 regulate steady-state levels of DNA polymerase-α to promote efficient and accurate DNA replication. Mol. Biol. Cell 2010, 21:3205-3219.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 3205-3219
-
-
Haworth, J.1
-
38
-
-
33747589932
-
Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast
-
Raveendranathan M., et al. Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO J. 2006, 25:3627-3639.
-
(2006)
EMBO J.
, vol.25
, pp. 3627-3639
-
-
Raveendranathan, M.1
-
39
-
-
80054757845
-
Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1)
-
Taylor M., et al. Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1). DNA Repair (Amst.) 2011, 10:1154-1163.
-
(2011)
DNA Repair (Amst.)
, vol.10
, pp. 1154-1163
-
-
Taylor, M.1
-
40
-
-
32444450705
-
Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication
-
Pacek M., et al. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 2006, 21:581-587.
-
(2006)
Mol. Cell
, vol.21
, pp. 581-587
-
-
Pacek, M.1
-
41
-
-
0034759285
-
+ (MCM10) and interactions with replication checkpoints
-
+ (MCM10) and interactions with replication checkpoints. Genetics 2001, 159:471-486.
-
(2001)
Genetics
, vol.159
, pp. 471-486
-
-
Liang, D.T.1
Forsburg, S.L.2
-
42
-
-
29144486147
-
Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations
-
Cobb J.A., et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 2005, 19:3055-3069.
-
(2005)
Genes Dev.
, vol.19
, pp. 3055-3069
-
-
Cobb, J.A.1
-
43
-
-
33745469893
-
Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast
-
Das-Bradoo S., et al. Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol. Cell. Biol. 2006, 26:4806-4817.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 4806-4817
-
-
Das-Bradoo, S.1
-
45
-
-
0141815735
-
A novel zinc finger is required for Mcm10 homocomplex assembly
-
Cook C.R., et al. A novel zinc finger is required for Mcm10 homocomplex assembly. J. Biol. Chem. 2003, 278:36051-36058.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 36051-36058
-
-
Cook, C.R.1
-
46
-
-
34848852742
-
Hexameric ring structure of human MCM10 DNA replication factor
-
Okorokov A.L., et al. Hexameric ring structure of human MCM10 DNA replication factor. EMBO Rep. 2007, 8:925-930.
-
(2007)
EMBO Rep.
, vol.8
, pp. 925-930
-
-
Okorokov, A.L.1
-
47
-
-
0035949599
-
A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems
-
Dalrymple B.P., et al. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:11627-11632.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 11627-11632
-
-
Dalrymple, B.P.1
-
48
-
-
4344693869
-
Expression of MCM10 and TopBP1 is regulated by cell proliferation and UV irradiation via the E2F transcription factor
-
Yoshida K., Inoue I. Expression of MCM10 and TopBP1 is regulated by cell proliferation and UV irradiation via the E2F transcription factor. Oncogene 2004, 23:6250-6260.
-
(2004)
Oncogene
, vol.23
, pp. 6250-6260
-
-
Yoshida, K.1
Inoue, I.2
-
49
-
-
0035930517
-
Cell cycle-dependent proteolysis and phosphorylation of human Mcm10
-
Izumi M., et al. Cell cycle-dependent proteolysis and phosphorylation of human Mcm10. J. Biol. Chem. 2001, 276:48526-48531.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 48526-48531
-
-
Izumi, M.1
-
50
-
-
77950879488
-
Ultraviolet radiation stress triggers the down-regulation of essential replication factor Mcm10
-
Sharma A., et al. Ultraviolet radiation stress triggers the down-regulation of essential replication factor Mcm10. J. Biol. Chem. 2010, 285:8352-8362.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8352-8362
-
-
Sharma, A.1
-
51
-
-
84867300936
-
CRL4-DDB1-VPRBP ubiquitin ligase mediates the stress triggered proteolysis of Mcm10
-
Kaur M., et al. CRL4-DDB1-VPRBP ubiquitin ligase mediates the stress triggered proteolysis of Mcm10. Nucleic Acids Res. 2012, 40:7332-7346.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 7332-7346
-
-
Kaur, M.1
-
52
-
-
0037418273
-
The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase
-
Lee J.K., et al. The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:2334-2339.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 2334-2339
-
-
Lee, J.K.1
-
53
-
-
34249947699
-
ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
-
Matsuoka S., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316:1160-1166.
-
(2007)
Science
, vol.316
, pp. 1160-1166
-
-
Matsuoka, S.1
-
54
-
-
67651119997
-
A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability
-
Paulsen R.D., et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 2009, 35:228-239.
-
(2009)
Mol. Cell
, vol.35
, pp. 228-239
-
-
Paulsen, R.D.1
-
55
-
-
79952281751
-
53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress
-
Lukas C., et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat. Cell Biol. 2011, 13:243-253.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 243-253
-
-
Lukas, C.1
-
56
-
-
36549076396
-
Knockdown of human MCM10 exhibits delayed and incomplete chromosome replication
-
Park J.H., et al. Knockdown of human MCM10 exhibits delayed and incomplete chromosome replication. Biochem. Biophys. Res. Commun. 2008, 365:575-582.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.365
, pp. 575-582
-
-
Park, J.H.1
-
57
-
-
36549084503
-
Knockdown of human MCM10 activates G2 checkpoint pathway
-
Park J.H., et al. Knockdown of human MCM10 activates G2 checkpoint pathway. Biochem. Biophys. Res. Commun. 2008, 365:490-495.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.365
, pp. 490-495
-
-
Park, J.H.1
-
58
-
-
27944467201
-
Dual roles for Mcm10 in DNA replication initiation and silencing at the mating-type loci
-
Douglas N.L., et al. Dual roles for Mcm10 in DNA replication initiation and silencing at the mating-type loci. Mol. Biol. Rep. 2005, 32:197-204.
-
(2005)
Mol. Biol. Rep.
, vol.32
, pp. 197-204
-
-
Douglas, N.L.1
-
59
-
-
31544437149
-
Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae
-
Liachko I., Tye B.K. Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae. Genetics 2005, 171:503-515.
-
(2005)
Genetics
, vol.171
, pp. 503-515
-
-
Liachko, I.1
Tye, B.K.2
-
60
-
-
62449182536
-
Mcm10 mediates the interaction between DNA replication and silencing machineries
-
Liachko I., Tye B.K. Mcm10 mediates the interaction between DNA replication and silencing machineries. Genetics 2009, 181:379-391.
-
(2009)
Genetics
, vol.181
, pp. 379-391
-
-
Liachko, I.1
Tye, B.K.2
-
61
-
-
34248374274
-
The CENP-B homolog, Abp1, interacts with the initiation protein Cdc23 (MCM10) and is required for efficient DNA replication in fission yeast
-
Locovei A.M., et al. The CENP-B homolog, Abp1, interacts with the initiation protein Cdc23 (MCM10) and is required for efficient DNA replication in fission yeast. Cell Div. 2006, 1:27.
-
(2006)
Cell Div.
, vol.1
, pp. 27
-
-
Locovei, A.M.1
-
62
-
-
84864256761
-
Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes
-
Wu C., et al. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics 2012, 13:182.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 182
-
-
Wu, C.1
-
63
-
-
35448958146
-
Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma
-
Koppen A., et al. Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma. Eur. J. Cancer 2007, 43:2413-2422.
-
(2007)
Eur. J. Cancer
, vol.43
, pp. 2413-2422
-
-
Koppen, A.1
-
64
-
-
53649107137
-
DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells
-
Garcia-Aragoncillo E., et al. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells. Oncogene 2008, 27:6034-6043.
-
(2008)
Oncogene
, vol.27
, pp. 6034-6043
-
-
Garcia-Aragoncillo, E.1
-
65
-
-
75549091259
-
DRYGIN: a database of quantitative genetic interaction networks in yeast
-
Koh J.L., et al. DRYGIN: a database of quantitative genetic interaction networks in yeast. Nucleic Acids Res. 2010, 38:502-507.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 502-507
-
-
Koh, J.L.1
-
66
-
-
0034485438
-
Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae
-
Kawasaki Y., et al. Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae. Genes Cells 2000, 5:975-989.
-
(2000)
Genes Cells
, vol.5
, pp. 975-989
-
-
Kawasaki, Y.1
-
67
-
-
0034656366
-
Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins
-
Homesley L., et al. Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev. 2000, 14:913-926.
-
(2000)
Genes Dev.
, vol.14
, pp. 913-926
-
-
Homesley, L.1
-
68
-
-
0037689099
-
Budding yeast mcm10/dna43 mutant requires a novel repair pathway for viability
-
Araki Y., et al. Budding yeast mcm10/dna43 mutant requires a novel repair pathway for viability. Genes Cells 2003, 8:465-480.
-
(2003)
Genes Cells
, vol.8
, pp. 465-480
-
-
Araki, Y.1
-
69
-
-
0036935267
-
Fission yeast Cdc23 interactions with DNA replication initiation proteins
-
Hart E.A., et al. Fission yeast Cdc23 interactions with DNA replication initiation proteins. Curr. Genet. 2002, 41:342-348.
-
(2002)
Curr. Genet.
, vol.41
, pp. 342-348
-
-
Hart, E.A.1
-
70
-
-
54949093203
-
Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase
-
Nagai S., et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 2008, 322:597-602.
-
(2008)
Science
, vol.322
, pp. 597-602
-
-
Nagai, S.1
-
71
-
-
2442660397
-
The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
-
Aparicio J.G., et al. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 2004, 24:4769-4780.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4769-4780
-
-
Aparicio, J.G.1
-
72
-
-
65449160972
-
Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
-
Knott S.R., et al. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009, 23:1077-1090.
-
(2009)
Genes Dev.
, vol.23
, pp. 1077-1090
-
-
Knott, S.R.1
-
73
-
-
0035947084
-
Identification of RFC (Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae
-
Mayer M.L., et al. Identification of RFC (Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 2001, 7:959-970.
-
(2001)
Mol. Cell
, vol.7
, pp. 959-970
-
-
Mayer, M.L.1
-
74
-
-
78549290265
-
Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
-
Crabbe L., et al. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 2010, 17:1391-1397.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1391-1397
-
-
Crabbe, L.1
-
75
-
-
79952272536
-
New functions of Ctf18-RFC in preserving genome stability outside its role in sister chromatid cohesion
-
Gellon L., et al. New functions of Ctf18-RFC in preserving genome stability outside its role in sister chromatid cohesion. PLoS Genet. 2011, 7:e1001298.
-
(2011)
PLoS Genet.
, vol.7
-
-
Gellon, L.1
-
76
-
-
0042337435
-
The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA
-
Bermudez V.P., et al. The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:10237-10242.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 10237-10242
-
-
Bermudez, V.P.1
-
77
-
-
3042757210
-
Self-assembling protein microarrays
-
Ramachandran N., et al. Self-assembling protein microarrays. Science 2004, 305:86-90.
-
(2004)
Science
, vol.305
, pp. 86-90
-
-
Ramachandran, N.1
|