-
1
-
-
25844438495
-
Repeat instability: mechanisms of dynamic mutations
-
Pearson CE, Edamura KN, Cleary JD, (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6: 729-742.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 729-742
-
-
Pearson, C.E.1
Edamura, K.N.2
Cleary, J.D.3
-
2
-
-
34250878426
-
Expandable DNA repeats and human disease
-
Mirkin SM, (2007) Expandable DNA repeats and human disease. Nature 447: 932-940.
-
(2007)
Nature
, vol.447
, pp. 932-940
-
-
Mirkin, S.M.1
-
3
-
-
34547681831
-
Chromosome Fragility: Molecular mechanisms and cellular consequences
-
Freudenreich CH, (2007) Chromosome Fragility: Molecular mechanisms and cellular consequences. Frontiers in Bioscience 12: 4911-4924.
-
(2007)
Frontiers in Bioscience
, vol.12
, pp. 4911-4924
-
-
Freudenreich, C.H.1
-
4
-
-
38049100631
-
Features of trinucleotide repeat instability in vivo
-
Kovtun IV, McMurray CT, (2008) Features of trinucleotide repeat instability in vivo. Cell Res 18: 198-213.
-
(2008)
Cell Res
, vol.18
, pp. 198-213
-
-
Kovtun, I.V.1
McMurray, C.T.2
-
5
-
-
32244438870
-
Transcription promotes contraction of CAG repeat tracts in human cells
-
Lin Y, Dion V, Wilson JH, (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13: 179-180.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 179-180
-
-
Lin, Y.1
Dion, V.2
Wilson, J.H.3
-
6
-
-
0242607211
-
Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type I disease locus in human cells
-
Yang Z, Lau R, Marcadier JL, Chitayat D, Pearson CE, (2003) Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type I disease locus in human cells. Am J Hum Genet 73: 1092-1105.
-
(2003)
Am J Hum Genet
, vol.73
, pp. 1092-1105
-
-
Yang, Z.1
Lau, R.2
Marcadier, J.L.3
Chitayat, D.4
Pearson, C.E.5
-
7
-
-
0042307369
-
Huntington disease expansion mutations in humans can occur before meiosis is completed
-
Yoon S-R, Dubeau L, de Young M, Wexler NS, Arnheim N, (2003) Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci USA 100: 8834-8838.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 8834-8838
-
-
Yoon, S.-R.1
Dubeau, L.2
de Young, M.3
Wexler, N.S.4
Arnheim, N.5
-
8
-
-
34447549077
-
Postreplicative formation of cohesion is required for repair and induced by a single DNA break
-
Ström L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, et al. (2007) Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317: 242-245.
-
(2007)
Science
, vol.317
, pp. 242-245
-
-
Ström, L.1
Karlsson, C.2
Lindroos, H.B.3
Wedahl, S.4
Katou, Y.5
-
9
-
-
34447536708
-
DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
-
Ünal E, Heidinger-Pauli JM, Koshland D, (2007) DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317: 245-248.
-
(2007)
Science
, vol.317
, pp. 245-248
-
-
Ünal, E.1
Heidinger-Pauli, J.M.2
Koshland, D.3
-
10
-
-
22344448705
-
Unzipped and loaded: the role of DNA helicases and RFC clamp-loading complexes in sister chromatid cohesion
-
Skibbens RV, (2005) Unzipped and loaded: the role of DNA helicases and RFC clamp-loading complexes in sister chromatid cohesion. J Cell Biol 169: 841-846.
-
(2005)
J Cell Biol
, vol.169
, pp. 841-846
-
-
Skibbens, R.V.1
-
11
-
-
0035051062
-
Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion
-
Hanna JS, Kroll ES, Lundblad V, Spencer FA, (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 21: 3144-3158.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 3144-3158
-
-
Hanna, J.S.1
Kroll, E.S.2
Lundblad, V.3
Spencer, F.A.4
-
12
-
-
0035947084
-
Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae
-
Mayer ML, Gygi SP, Aebersold R, Hieter P, (2001) Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell 7: 959-970.
-
(2001)
Mol Cell
, vol.7
, pp. 959-970
-
-
Mayer, M.L.1
Gygi, S.P.2
Aebersold, R.3
Hieter, P.4
-
13
-
-
0042337435
-
The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA
-
Bermudez VP, Maniwa Y, Tappin I, Ozato K, Hurwitz J, (2003) The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc Natl Acad Sci USA 100: 10237-10242.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 10237-10242
-
-
Bermudez, V.P.1
Maniwa, Y.2
Tappin, I.3
Ozato, K.4
Hurwitz, J.5
-
14
-
-
1942534712
-
The reconstituted human Chl12-RFC complex functions as a second PCNA loader
-
Shiomi Y, Shinozaki A, Sugimoto K, Usukura J, Obuse C, et al. (2004) The reconstituted human Chl12-RFC complex functions as a second PCNA loader. Genes Cells 9: 279-290.
-
(2004)
Genes Cells
, vol.9
, pp. 279-290
-
-
Shiomi, Y.1
Shinozaki, A.2
Sugimoto, K.3
Usukura, J.4
Obuse, C.5
-
15
-
-
20744435871
-
Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex
-
Bylund GO, Burgers PMJ, (2005) Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 25: 5445-5455.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 5445-5455
-
-
Bylund, G.O.1
Burgers, P.M.J.2
-
16
-
-
33748424969
-
Establishment of sister chromatid cohesion at the S. cerevisiae replication fork
-
Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner K-P, et al. (2006) Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 23: 787-799.
-
(2006)
Mol Cell
, vol.23
, pp. 787-799
-
-
Lengronne, A.1
McIntyre, J.2
Katou, Y.3
Kanoh, Y.4
Hopfner, K.-P.5
-
17
-
-
39449099352
-
RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe
-
Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM, et al. (2008) RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. Mol Biol Cell 19: 595-607.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 595-607
-
-
Ansbach, A.B.1
Noguchi, C.2
Klansek, I.W.3
Heidlebaugh, M.4
Nakamura, T.M.5
-
18
-
-
78549290265
-
Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
-
Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P, et al. (2010) Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol 17: 1391-1398.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1391-1398
-
-
Crabbe, L.1
Thomas, A.2
Pantesco, V.3
De Vos, J.4
Pasero, P.5
-
19
-
-
40649114958
-
Mrc1, Tof1 and Csm3 inhibit CAG·CTG repeat instability by at least two mechanisms
-
Razidlo DF, Lahue RS, (2008) Mrc1, Tof1 and Csm3 inhibit CAG·CTG repeat instability by at least two mechanisms. DNA Repair 7: 633-640.
-
(2008)
DNA Repair
, vol.7
, pp. 633-640
-
-
Razidlo, D.F.1
Lahue, R.S.2
-
20
-
-
0142027842
-
Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility
-
Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH, (2003) Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol Cell Biol 23: 7849-7860.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 7849-7860
-
-
Callahan, J.L.1
Andrews, K.J.2
Zakian, V.A.3
Freudenreich, C.H.4
-
21
-
-
34147217542
-
Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
-
Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806-810.
-
(2007)
Nature
, vol.446
, pp. 806-810
-
-
Collins, S.R.1
Miller, K.M.2
Maas, N.L.3
Roguev, A.4
Fillingham, J.5
-
22
-
-
34547131331
-
Genetic dissection of parallel sister-chromatid cohesion pathways
-
Xu H, Boone C, Brown GW, (2007) Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 176: 1417-1429.
-
(2007)
Genetics
, vol.176
, pp. 1417-1429
-
-
Xu, H.1
Boone, C.2
Brown, G.W.3
-
23
-
-
4444292553
-
Sister-chromatid cohesion mediated by the alternative RFC-Ctf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II
-
Petronczki M, Chwalla B, Siomos MF, Yokobayashi S, Helmhart W, et al. (2004) Sister-chromatid cohesion mediated by the alternative RFC-Ctf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci 117: 3547-3559.
-
(2004)
J Cell Sci
, vol.117
, pp. 3547-3559
-
-
Petronczki, M.1
Chwalla, B.2
Siomos, M.F.3
Yokobayashi, S.4
Helmhart, W.5
-
24
-
-
1642360837
-
Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion
-
Skibbens RV, (2004) Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166: 33-42.
-
(2004)
Genetics
, vol.166
, pp. 33-42
-
-
Skibbens, R.V.1
-
25
-
-
70350572751
-
A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome
-
Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, et al. (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome. EMBO J 28: 2992-3004.
-
(2009)
EMBO J
, vol.28
, pp. 2992-3004
-
-
Gambus, A.1
van Deursen, F.2
Polychronopoulos, D.3
Foltman, M.4
Jones, R.C.5
-
26
-
-
71249085585
-
Tipin/Tim1/And1 protein complex promotes Polα chromatin binding and sister chromatid cohesion
-
Errico A, Cosentino C, Rivera T, Losada A, Schwob E, et al. (2009) Tipin/Tim1/And1 protein complex promotes Polα chromatin binding and sister chromatid cohesion. EMBO J 28: 3681-3692.
-
(2009)
EMBO J
, vol.28
, pp. 3681-3692
-
-
Errico, A.1
Cosentino, C.2
Rivera, T.3
Losada, A.4
Schwob, E.5
-
27
-
-
3142760095
-
The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae
-
Suter B, Tong AHY, Chang M, Yu L, Brown GW, et al. (2004) The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae. Genetics 167: 579-591.
-
(2004)
Genetics
, vol.167
, pp. 579-591
-
-
Suter, B.1
Tong, A.H.Y.2
Chang, M.3
Yu, L.4
Brown, G.W.5
-
28
-
-
59649119505
-
SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination
-
Kerrest A, Anand RP, Sundararajan R, Bermejo R, Liberi G, et al. (2009) SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 16: 159-167.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 159-167
-
-
Kerrest, A.1
Anand, R.P.2
Sundararajan, R.3
Bermejo, R.4
Liberi, G.5
-
29
-
-
74249111370
-
Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae
-
Sundararajan R, Gellon L, Zunder RM, Freudenreich CH, (2010) Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae. Genetics 184: 65-77.
-
(2010)
Genetics
, vol.184
, pp. 65-77
-
-
Sundararajan, R.1
Gellon, L.2
Zunder, R.M.3
Freudenreich, C.H.4
-
30
-
-
33644555054
-
Proteome survey reveals modularity of the yeast cell machinery
-
Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631-636.
-
(2006)
Nature
, vol.440
, pp. 631-636
-
-
Gavin, A.C.1
Aloy, P.2
Grandi, P.3
Krause, R.4
Boesche, M.5
-
31
-
-
53149135030
-
Mrc1 and DNA polymerase ε function together in linking DNA replication and the S phase checkpoint
-
Lou H, Komata M, Katou Y, Guan Z, Reis C, et al. (2008) Mrc1 and DNA polymerase ε function together in linking DNA replication and the S phase checkpoint. Mol Cell 32: 106-117.
-
(2008)
Mol Cell
, vol.32
, pp. 106-117
-
-
Lou, H.1
Komata, M.2
Katou, Y.3
Guan, Z.4
Reis, C.5
-
33
-
-
34249935010
-
Maintenance of fork integrity at damaged DNA and natural pause sites
-
Tourrière H, Pasero P, (2007) Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair 6: 900-913.
-
(2007)
DNA Repair
, vol.6
, pp. 900-913
-
-
Tourrière, H.1
Pasero, P.2
-
34
-
-
3242658268
-
Expanded CAG repeats activate the DNA damage checkpoint pathway
-
Lahiri M, Gustafson TL, Majors ER, Freudenreich CH, (2004) Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol Cell 15: 287-293.
-
(2004)
Mol Cell
, vol.15
, pp. 287-293
-
-
Lahiri, M.1
Gustafson, T.L.2
Majors, E.R.3
Freudenreich, C.H.4
-
35
-
-
13444253858
-
Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases
-
Freudenreich CH, Lahiri M, (2004) Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3: 1370-1374.
-
(2004)
Cell Cycle
, vol.3
, pp. 1370-1374
-
-
Freudenreich, C.H.1
Lahiri, M.2
-
36
-
-
33644778778
-
A DNA integrity network in the yeast Saccharomyces cerevisiae
-
Pan X, Ye P, Yuan DS, Wang X, Bader JS, et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124: 1069-1081.
-
(2006)
Cell
, vol.124
, pp. 1069-1081
-
-
Pan, X.1
Ye, P.2
Yuan, D.S.3
Wang, X.4
Bader, J.S.5
-
37
-
-
33845337082
-
Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
-
Enserink JM, Smolka MB, Zhou H, Kolodner RD, (2006) Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J Cell Biol 175: 729-741.
-
(2006)
J Cell Biol
, vol.175
, pp. 729-741
-
-
Enserink, J.M.1
Smolka, M.B.2
Zhou, H.3
Kolodner, R.D.4
-
38
-
-
0027421043
-
Loss of a yeast telomere: arrest, recovery, and chromosome loss
-
Sandell LL, Zakian VA, (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75: 729-739.
-
(1993)
Cell
, vol.75
, pp. 729-739
-
-
Sandell, L.L.1
Zakian, V.A.2
-
39
-
-
0030885666
-
CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
-
Toczyski DP, Hartwell LH, (1997) CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90: 1097-1106.
-
(1997)
Cell
, vol.90
, pp. 1097-1106
-
-
Toczyski, D.P.1
Hartwell, L.H.2
-
40
-
-
4544281398
-
Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M, Barlow JH, Burgess RC, Rothstein R, (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699-713.
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
Barlow, J.H.2
Burgess, R.C.3
Rothstein, R.4
-
41
-
-
1642416422
-
Requirement for Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase
-
Schmidt KH, Kolodner RD, (2004) Requirement for Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol Cell Biol 24: 3213-3226.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 3213-3226
-
-
Schmidt, K.H.1
Kolodner, R.D.2
-
42
-
-
78049367704
-
Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase epsilon is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8
-
Murakami T, Takano R, Takeo S, Taniguchi R, Ogawa K, et al. (2010) Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase epsilon is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8. J Biol Chem 285: 34608-34615.
-
(2010)
J Biol Chem
, vol.285
, pp. 34608-34615
-
-
Murakami, T.1
Takano, R.2
Takeo, S.3
Taniguchi, R.4
Ogawa, K.5
-
43
-
-
77951699996
-
The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
-
Karras GI, Jentsch S, (2010) The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141: 255-267.
-
(2010)
Cell
, vol.141
, pp. 255-267
-
-
Karras, G.I.1
Jentsch, S.2
-
44
-
-
77953694683
-
Ubiquitin-dependent DNA damage bypass is separable from genome replication
-
Daigaku Y, Davies AA, Ulrich HD, (2010) Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465: 951-956.
-
(2010)
Nature
, vol.465
, pp. 951-956
-
-
Daigaku, Y.1
Davies, A.A.2
Ulrich, H.D.3
-
45
-
-
33845785225
-
Postreplication repair inhibits CAG·CTG repeat expansions in Saccharomyces cerevisiae
-
Daee DL, Mertz T, Lahue RS, (2007) Postreplication repair inhibits CAG·CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 27: 102-110.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 102-110
-
-
Daee, D.L.1
Mertz, T.2
Lahue, R.S.3
-
46
-
-
57749169348
-
SUMOylation regulates Rad18-mediated template switch
-
Branzei D, Vanoli F, Foiani M, (2008) SUMOylation regulates Rad18-mediated template switch. Nature 456: 915-920.
-
(2008)
Nature
, vol.456
, pp. 915-920
-
-
Branzei, D.1
Vanoli, F.2
Foiani, M.3
-
47
-
-
70449659953
-
Cohesin acetylation speeds the replication forks
-
Terret M-E, Sherwood R, Rahman S, Qin J, Jallepalli PV, (2009) Cohesin acetylation speeds the replication forks. Nature 462: 231-234.
-
(2009)
Nature
, vol.462
, pp. 231-234
-
-
Terret, M.-E.1
Sherwood, R.2
Rahman, S.3
Qin, J.4
Jallepalli, P.V.5
-
48
-
-
77649242633
-
Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
-
Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, et al. (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 37: 714-727.
-
(2010)
Mol Cell
, vol.37
, pp. 714-727
-
-
Ogi, T.1
Limsirichaikul, S.2
Overmeer, R.M.3
Volker, M.4
Takenaka, K.5
-
49
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
-
50
-
-
0032054944
-
The statistics of synergism
-
Slinker BK, (1998) The statistics of synergism. J Mol Cell Cardiol 30: 723-731.
-
(1998)
J Mol Cell Cardiol
, vol.30
, pp. 723-731
-
-
Slinker, B.K.1
-
51
-
-
0036226637
-
Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation
-
Zheng Q, (2002) Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Math Biosci 176: 237-252.
-
(2002)
Math Biosci
, vol.176
, pp. 237-252
-
-
Zheng, Q.1
-
52
-
-
0035902544
-
Rad52 forms DNA repair and recombination centers during S phase
-
Lisby M, Rothstein R, Mortensen UH, (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci U S A 98: 8276-8282.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 8276-8282
-
-
Lisby, M.1
Rothstein, R.2
Mortensen, U.H.3
|