-
1
-
-
20744439516
-
The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it
-
Hay ED. 2005. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233: 706-20.
-
(2005)
Dev Dyn
, vol.233
, pp. 706-720
-
-
Hay, E.D.1
-
2
-
-
63049123066
-
Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits
-
Polyak K, Weinberg RA. 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265-73.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 265-273
-
-
Polyak, K.1
Weinberg, R.A.2
-
3
-
-
84055216938
-
Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation
-
Yao D, Dai C, Peng S. 2011. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 9: 1608-20.
-
(2011)
Mol Cancer Res
, vol.9
, pp. 1608-1620
-
-
Yao, D.1
Dai, C.2
Peng, S.3
-
4
-
-
43049165453
-
The epithelial-mesenchymal transition generates cells with properties of stem cells
-
Mani SA, Guo W, Liao MJ, Eaton EN, et al. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704-15.
-
(2008)
Cell
, vol.133
, pp. 704-715
-
-
Mani, S.A.1
Guo, W.2
Liao, M.J.3
Eaton, E.N.4
-
5
-
-
84857817163
-
Slug and Sox9 cooperatively determine the mammary stem cell state
-
Guo W, Keckesova Z, Donaher JL, Shibue T, et al. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148: 1015-28.
-
(2012)
Cell
, vol.148
, pp. 1015-1028
-
-
Guo, W.1
Keckesova, Z.2
Donaher, J.L.3
Shibue, T.4
-
6
-
-
34249289041
-
Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype
-
Peinado H, Olmeda D, Cano A. 2007. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415-28.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 415-428
-
-
Peinado, H.1
Olmeda, D.2
Cano, A.3
-
7
-
-
70450198396
-
Epithelial-mesenchymal transitions in development and disease
-
Thiery JP, Acloque H, Huang RY, Nieto MA. 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139: 871-90.
-
(2009)
Cell
, vol.139
, pp. 871-890
-
-
Thiery, J.P.1
Acloque, H.2
Huang, R.Y.3
Nieto, M.A.4
-
8
-
-
84861545694
-
Planar cell polarity links axes of spatial dynamics in neural tube closure
-
Nishimura T, Honda H, Takeichi M. 2012. Planar cell polarity links axes of spatial dynamics in neural tube closure. Cell 149: 1084-97.
-
(2012)
Cell
, vol.149
, pp. 1084-1097
-
-
Nishimura, T.1
Honda, H.2
Takeichi, M.3
-
9
-
-
80052712201
-
The ins and outs of the epithelial to mesenchymal transition in health and disease
-
Nieto MA. 2011. The ins and outs of the epithelial to mesenchymal transition in health and disease. Ann Rev Cell Dev Biol 27: 347-76.
-
(2011)
Ann Rev Cell Dev Biol
, vol.27
, pp. 347-376
-
-
Nieto, M.A.1
-
10
-
-
70350228491
-
Collective cell migration
-
Rorth P. 2009. Collective cell migration. Ann Rev Cell Dev Biol 25: 407-29.
-
(2009)
Ann Rev Cell Dev Biol
, vol.25
, pp. 407-429
-
-
Rorth, P.1
-
11
-
-
84859915535
-
Differential positioning of adherens junctions is associated with initation of epithelial folding
-
Wang Y-C, Zhan Z, Kaschube M, Wieschaus EF. 2012. Differential positioning of adherens junctions is associated with initation of epithelial folding. Nature 484: 390-3.
-
(2012)
Nature
, vol.484
, pp. 390-393
-
-
Wang, Y.-C.1
Zhan, Z.2
Kaschube, M.3
Wieschaus, E.F.4
-
12
-
-
0035810944
-
Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta
-
Zavadil J, Bitzer M, Liang D, Yang YC, et al. 2001. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 98: 6686-91.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 6686-6691
-
-
Zavadil, J.1
Bitzer, M.2
Liang, D.3
Yang, Y.C.4
-
13
-
-
41549162752
-
Transitions between epithelial and mesenchymal states in development and disease
-
Baum B, Settleman J, Quinlan MP. 2008. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19: 294-308.
-
(2008)
Semin Cell Dev Biol
, vol.19
, pp. 294-308
-
-
Baum, B.1
Settleman, J.2
Quinlan, M.P.3
-
14
-
-
67650999875
-
The basics of epithelial-mesenchymal transition
-
Kalluri R, Weinberg RA. 2009. The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420-8.
-
(2009)
J Clin Invest
, vol.119
, pp. 1420-1428
-
-
Kalluri, R.1
Weinberg, R.A.2
-
15
-
-
71049150077
-
Bone morphogenetic protein 7 induces mesenchymal-to-epithelial transition in melanoma cells, leading to inhibition of metastasis
-
Na YR, Seok SH, Kim DJ, Han JH, et al. 2009. Bone morphogenetic protein 7 induces mesenchymal-to-epithelial transition in melanoma cells, leading to inhibition of metastasis. Cancer Sci 100: 2218-25.
-
(2009)
Cancer Sci
, vol.100
, pp. 2218-2225
-
-
Na, Y.R.1
Seok, S.H.2
Kim, D.J.3
Han, J.H.4
-
16
-
-
62549111693
-
The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies
-
Hollier BG, Evans K, Mani SA. 2009. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol 14: 29-43.
-
(2009)
J Mammary Gland Biol
, vol.14
, pp. 29-43
-
-
Hollier, B.G.1
Evans, K.2
Mani, S.A.3
-
17
-
-
80053074082
-
Epithelial-mesenchymal transition in breast cancer progression and metastasis
-
Wang Y, Zhou BP. 2011. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 30: 603-11.
-
(2011)
Chin J Cancer
, vol.30
, pp. 603-611
-
-
Wang, Y.1
Zhou, B.P.2
-
18
-
-
68249092353
-
A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition
-
Vincent T, Neve EP, Johnson JR, Kukalev A, et al. 2009. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11: 943-50.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 943-950
-
-
Vincent, T.1
Neve, E.P.2
Johnson, J.R.3
Kukalev, A.4
-
19
-
-
15744374449
-
Wnt-dependent regulation of the E-cadherin repressor snail
-
Yook JI, Li XY, Ota I, Fearon ER, et al. 2005. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280: 11740-8.
-
(2005)
J Biol Chem
, vol.280
, pp. 11740-11748
-
-
Yook, J.I.1
Li, X.Y.2
Ota, I.3
Fearon, E.R.4
-
20
-
-
9144246932
-
Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation
-
Timmerman LA, Grego-Bessa J, Raya A, Bertran E, et al. 2004. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Gene Dev 18: 99-115.
-
(2004)
Gene Dev
, vol.18
, pp. 99-115
-
-
Timmerman, L.A.1
Grego-Bessa, J.2
Raya, A.3
Bertran, E.4
-
21
-
-
36549010842
-
Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin
-
Leong KG, Niessen K, Kulic I, Raouf A, et al. 2007. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204: 2935-48.
-
(2007)
J Exp Med
, vol.204
, pp. 2935-2948
-
-
Leong, K.G.1
Niessen, K.2
Kulic, I.3
Raouf, A.4
-
23
-
-
84865169224
-
Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition
-
Wu CY, Tsai YP, Wu MZ, Teng SC, et al. 2012. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 28: 454-63.
-
(2012)
Trends Genet
, vol.28
, pp. 454-463
-
-
Wu, C.Y.1
Tsai, Y.P.2
Wu, M.Z.3
Teng, S.C.4
-
24
-
-
44449144396
-
Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis
-
Yang J, Weinberg RA. 2008. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818-29.
-
(2008)
Dev Cell
, vol.14
, pp. 818-829
-
-
Yang, J.1
Weinberg, R.A.2
-
25
-
-
84861802693
-
MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression
-
Bullock MD, Sayan AE, Packham GK, Mirnezami AH. 2012. MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell 104: 3-12.
-
(2012)
Biol Cell
, vol.104
, pp. 3-12
-
-
Bullock, M.D.1
Sayan, A.E.2
Packham, G.K.3
Mirnezami, A.H.4
-
26
-
-
79651469908
-
Role of miR-10b in breast cancer metastasis
-
Ma L. 2010. Role of miR-10b in breast cancer metastasis. Breast Cancer Res 12: 210.
-
(2010)
Breast Cancer Res
, vol.12
, pp. 210
-
-
Ma, L.1
-
27
-
-
77649276051
-
Myc-modulated miR-9 makes more metastases
-
Khew-Goodall Y, Goodall GJ. 2010. Myc-modulated miR-9 makes more metastases. Nat Cell Biol 12: 209-11.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 209-211
-
-
Khew-Goodall, Y.1
Goodall, G.J.2
-
28
-
-
79952283482
-
p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs
-
Chang CJ, Chao CH, Xia W, Yang JY, et al. 2011. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13: 317-23.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 317-323
-
-
Chang, C.J.1
Chao, C.H.2
Xia, W.3
Yang, J.Y.4
-
29
-
-
0036668281
-
Cell movements during gastrulation: snail dependent and independent pathways
-
Ip YT, Gridley T. 2002. Cell movements during gastrulation: snail dependent and independent pathways. Curr Opin Genet Dev 12: 423-9.
-
(2002)
Curr Opin Genet Dev
, vol.12
, pp. 423-429
-
-
Ip, Y.T.1
Gridley, T.2
-
30
-
-
0021220312
-
Mutations and chromosomal rearrangements affecting the expression of snail, a gene involved in embryonic patterning in Drosophila melanogaster
-
Grau Y, Carteret C, Simpson P. 1984. Mutations and chromosomal rearrangements affecting the expression of snail, a gene involved in embryonic patterning in Drosophila melanogaster. Genetics 108: 347-60.
-
(1984)
Genetics
, vol.108
, pp. 347-360
-
-
Grau, Y.1
Carteret, C.2
Simpson, P.3
-
31
-
-
0021034649
-
Maternal-zygotic gene interactions during formation of the dorsoventral pattern in drosophila embryos
-
Simpson P. 1983. Maternal-zygotic gene interactions during formation of the dorsoventral pattern in drosophila embryos. Genetics 105: 615-32.
-
(1983)
Genetics
, vol.105
, pp. 615-632
-
-
Simpson, P.1
-
32
-
-
0034716888
-
A genetic link between morphogenesis and cell division during formation of the ventral furrow in drosophila
-
Grobhans J, Wieschaus E. 2000. A genetic link between morphogenesis and cell division during formation of the ventral furrow in drosophila. Cell 101: 523-31.
-
(2000)
Cell
, vol.101
, pp. 523-531
-
-
Grobhans, J.1
Wieschaus, E.2
-
33
-
-
0036513626
-
The snail superfamily of zinc-finger transcription factors
-
Nieto MA. 2002. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155-66.
-
(2002)
Nat Rev Mol Cell Biol
, vol.3
, pp. 155-166
-
-
Nieto, M.A.1
-
34
-
-
0028318730
-
Control of cell behavior during vertebrate development by Slug, a zinc finger gene
-
Nieto MA, Sargent MG, Wilkinson DG, Cooke J. 1994. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264: 835-9.
-
(1994)
Science
, vol.264
, pp. 835-839
-
-
Nieto, M.A.1
Sargent, M.G.2
Wilkinson, D.G.3
Cooke, J.4
-
35
-
-
0035167812
-
The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition
-
Carver EA, Jiang R, Lan Y, Oram KF, et al. 2001. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21: 8184-8.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 8184-8188
-
-
Carver, E.A.1
Jiang, R.2
Lan, Y.3
Oram, K.F.4
-
36
-
-
80455131326
-
Twist controls skeletal development and dorsoventral patterning by regulating runx2 in zebrafish
-
Yang DC, Tsai CC, Liao YF, Fu HC, et al. 2011. Twist controls skeletal development and dorsoventral patterning by regulating runx2 in zebrafish. PloS ONE 6: e27324.
-
(2011)
PloS ONE
, vol.6
-
-
Yang, D.C.1
Tsai, C.C.2
Liao, Y.F.3
Fu, H.C.4
-
37
-
-
73349108404
-
Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin
-
Martinez-Estrada OM, Lettice LA, Essafi A, Guadix JA, et al. 2010. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet 42: 89-93.
-
(2010)
Nat Genet
, vol.42
, pp. 89-93
-
-
Martinez-Estrada, O.M.1
Lettice, L.A.2
Essafi, A.3
Guadix, J.A.4
-
38
-
-
0036595629
-
Epithelial-mesenchymal transitions in tumour progression
-
Thiery JP. 2002. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442-54.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 442-454
-
-
Thiery, J.P.1
-
39
-
-
47849101658
-
The "seed and soil" hypothesis revisited
-
Fidler IJ, Poste G. 2008. The "seed and soil" hypothesis revisited. Lancet Oncol 9: 808.
-
(2008)
Lancet Oncol
, vol.9
, pp. 808
-
-
Fidler, I.J.1
Poste, G.2
-
40
-
-
84864700324
-
Phthalates stimulate the epithelial to mesenchymal transition through an HDAC-6-dependent mechanism in human breast epithelial stem cells
-
Hsieh TH, Tsai CF, Hsu CY, Kuo PL, et al. 2012. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC-6-dependent mechanism in human breast epithelial stem cells. Toxicol Sci 128: 365-76.
-
(2012)
Toxicol Sci
, vol.128
, pp. 365-376
-
-
Hsieh, T.H.1
Tsai, C.F.2
Hsu, C.Y.3
Kuo, P.L.4
-
41
-
-
84863928222
-
ZNF217 is a marker of poor prognosis in breast cancer that drives epithelial-mesenchymal transition and invastion
-
Vendrell JA, Thollet A, Nguyen NT, Ghayad SE, et al. 2012. ZNF217 is a marker of poor prognosis in breast cancer that drives epithelial-mesenchymal transition and invastion. Cancer Res 72: 3593-606.
-
(2012)
Cancer Res
, vol.72
, pp. 3593-3606
-
-
Vendrell, J.A.1
Thollet, A.2
Nguyen, N.T.3
Ghayad, S.E.4
-
42
-
-
84861309032
-
Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells
-
Cakouros D, Isenmann S, Cooper L, Zannettino A, et al. 2012. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol Cell Biol 32: 1433-1.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1433-1431
-
-
Cakouros, D.1
Isenmann, S.2
Cooper, L.3
Zannettino, A.4
-
43
-
-
84875220237
-
Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer
-
in press, DOI: 10.1038/onc.2012.169
-
Dong C, Wu Y, Wang Y, Kang T, et al. 2012. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene, in press, DOI: 10.1038/onc.2012.169.
-
(2012)
Oncogene
-
-
Dong, C.1
Wu, Y.2
Wang, Y.3
Kang, T.4
-
44
-
-
27944472753
-
Cancer development induced by graded expression of snail in mice
-
Perez-Mancera PA, Perez-Carlo M, Gonzalez-Herrero I, Florez T, et al. 2005. Cancer development induced by graded expression of snail in mice. Hum Mol Genet 14: 3449-61.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 3449-3461
-
-
Perez-Mancera, P.A.1
Perez-Carlo, M.2
Gonzalez-Herrero, I.3
Florez, T.4
-
45
-
-
84861968669
-
TGF-b-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex
-
Thallainadesan G, Chitilian JM, Isovic M, Ablack JG, et al. 2012. TGF-b-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell 46: 1-14.
-
(2012)
Mol Cell
, vol.46
, pp. 1-14
-
-
Thallainadesan, G.1
Chitilian, J.M.2
Isovic, M.3
Ablack, J.G.4
-
46
-
-
72849130207
-
The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells
-
Song LB, Li J, Liao WT, Feng Y, et al. 2009. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 119: 3626-36.
-
(2009)
J Clin Invest
, vol.119
, pp. 3626-3636
-
-
Song, L.B.1
Li, J.2
Liao, W.T.3
Feng, Y.4
-
47
-
-
77956338683
-
Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition
-
Lin T, Ponn A, Hu X, Law BK, et al. 2010. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29: 4896-904.
-
(2010)
Oncogene
, vol.29
, pp. 4896-4904
-
-
Lin, T.1
Ponn, A.2
Hu, X.3
Law, B.K.4
-
48
-
-
77956280751
-
p53 is balancing development, differentiation and de-differentiation to assure cancer prevention
-
Molchadsky A, Rivlin N, Brosh R, Rotter V, et al. 2010. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 31: 1501-8.
-
(2010)
Carcinogenesis
, vol.31
, pp. 1501-1508
-
-
Molchadsky, A.1
Rivlin, N.2
Brosh, R.3
Rotter, V.4
-
49
-
-
33947192053
-
Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel
-
Cheng GZ, Chan J, Wang Q, Zhang W, et al. 2007. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67: 1979-87.
-
(2007)
Cancer Res
, vol.67
, pp. 1979-1987
-
-
Cheng, G.Z.1
Chan, J.2
Wang, Q.3
Zhang, W.4
-
50
-
-
2442705493
-
Snail blocks the cell cycle and confers resistance to cell death
-
Vega S, Morales AV, Ocana OH, Valdes F, et al. 2004. Snail blocks the cell cycle and confers resistance to cell death. Gen Dev 18: 1131-43.
-
(2004)
Gen Dev
, vol.18
, pp. 1131-1143
-
-
Vega, S.1
Morales, A.V.2
Ocana, O.H.3
Valdes, F.4
-
51
-
-
84862777088
-
EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer
-
Haslehurst AM, Koti M, Dharsee M, Nuin P, et al. 2012. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12: 91.
-
(2012)
BMC Cancer
, vol.12
, pp. 91
-
-
Haslehurst, A.M.1
Koti, M.2
Dharsee, M.3
Nuin, P.4
-
52
-
-
19044372843
-
Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo
-
Inoue A, Seidel MG, Wu W, Kamizono S, et al. 2002. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2: 279-88.
-
(2002)
Cancer Cell
, vol.2
, pp. 279-288
-
-
Inoue, A.1
Seidel, M.G.2
Wu, W.3
Kamizono, S.4
-
53
-
-
27744547091
-
Slug antagonises p53-mediated apoptosis of hematopoietic progenitors by repressing puma
-
Wu WS, Heinrichs S, Xu D, Garrison SP, et al. 2005. Slug antagonises p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell Stem Cell 123: 641-53.
-
(2005)
Cell Stem Cell
, vol.123
, pp. 641-653
-
-
Wu, W.S.1
Heinrichs, S.2
Xu, D.3
Garrison, S.P.4
-
54
-
-
79955428953
-
p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes
-
Rinon A, Molchadsky A, Nathan E, Yovel G, et al. 2011. p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes. Development 138: 1827-38.
-
(2011)
Development
, vol.138
, pp. 1827-1838
-
-
Rinon, A.1
Molchadsky, A.2
Nathan, E.3
Yovel, G.4
-
55
-
-
84873562335
-
The role of EMT modulators in hematopoiesis and leukemic transformation.
-
Lawrie C, ed Intech. online open access publisher
-
Goossens S, Haigh JJ, 2012. The role of EMT modulators in hematopoiesis and leukemic transformation. In Lawrie C, ed; Hematology - Science and Practice. Intech. p. 101-120 online open access publisher.
-
(2012)
Hematology - Science and Practice
, pp. 101-120
-
-
Goossens, S.1
Haigh, J.J.2
-
56
-
-
79957610057
-
The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization
-
Goossens S, Janzen V, Bartunkova S, Yokomizo T, et al. 2011 The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood 117: 5620-30.
-
(2011)
Blood
, vol.117
, pp. 5620-5630
-
-
Goossens, S.1
Janzen, V.2
Bartunkova, S.3
Yokomizo, T.4
-
57
-
-
0037103359
-
Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway
-
Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, et al. 2002. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 100: 1274-86.
-
(2002)
Blood
, vol.100
, pp. 1274-1286
-
-
Perez-Losada, J.1
Sanchez-Martin, M.2
Rodriguez-Garcia, A.3
Sanchez, M.L.4
-
58
-
-
70350239862
-
TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment
-
Isenmann S, Arthur A, Zannettino AC, Turner JL, et al. 2009. TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells 27: 2457-68.
-
(2009)
Stem Cells
, vol.27
, pp. 2457-2468
-
-
Isenmann, S.1
Arthur, A.2
Zannettino, A.C.3
Turner, J.L.4
-
59
-
-
77955484344
-
Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis
-
Cakouros D, Raices RM, Gronthos S, Glackin CA. 2010. Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. J Cell Biochem 110: 1288-98.
-
(2010)
J Cell Biochem
, vol.110
, pp. 1288-1298
-
-
Cakouros, D.1
Raices, R.M.2
Gronthos, S.3
Glackin, C.A.4
-
60
-
-
77956178360
-
EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer
-
Singh A, Settleman J. 2010. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29: 4741-51.
-
(2010)
Oncogene
, vol.29
, pp. 4741-4751
-
-
Singh, A.1
Settleman, J.2
-
62
-
-
82555181312
-
The mammary myoepithelial cell
-
Moumen M, Chiche A, Cagnet S, Petit V, et al. 2011. The mammary myoepithelial cell. Int J Dev Biol 55: 763-71.
-
(2011)
Int J Dev Biol
, vol.55
, pp. 763-771
-
-
Moumen, M.1
Chiche, A.2
Cagnet, S.3
Petit, V.4
-
63
-
-
33847419142
-
Molecular definition of breast tumor heterogeneity
-
Shipitsin M, Campbell LL, Argani P, Weremowicz S, et al. 2007. Molecular definition of breast tumor heterogeneity. Cancer Cell 11: 259-73.
-
(2007)
Cancer Cell
, vol.11
, pp. 259-273
-
-
Shipitsin, M.1
Campbell, L.L.2
Argani, P.3
Weremowicz, S.4
-
65
-
-
77954127287
-
Insights into the cell of origin in breast cancer and breast cancer stem cells
-
Lindeman GJ, Visvader JE. 2010. Insights into the cell of origin in breast cancer and breast cancer stem cells. Asia Pac J Clin Oncol 6: 89-97.
-
(2010)
Asia Pac J Clin Oncol
, vol.6
, pp. 89-97
-
-
Lindeman, G.J.1
Visvader, J.E.2
-
66
-
-
68349130357
-
Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers
-
Lim E, Vaillant F, Wu D, Forrest NC, et al. 2009. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15: 907-13.
-
(2009)
Nat Med
, vol.15
, pp. 907-913
-
-
Lim, E.1
Vaillant, F.2
Wu, D.3
Forrest, N.C.4
-
67
-
-
77956218241
-
BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells
-
Molyneux G, Geyer FC, Magnay FA, McCarthy A, et al. 2010. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7: 403-17.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 403-417
-
-
Molyneux, G.1
Geyer, F.C.2
Magnay, F.A.3
McCarthy, A.4
-
68
-
-
72949104153
-
Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression
-
Vesuna F, Lisok A, Kimble B, Raman V. 2009. Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 11: 1318-28.
-
(2009)
Neoplasia
, vol.11
, pp. 1318-1328
-
-
Vesuna, F.1
Lisok, A.2
Kimble, B.3
Raman, V.4
-
69
-
-
77955811853
-
Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells
-
Battula VL, Evans KW, Hollier BG, Shi Y, et al. 2010. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem cells 28: 1435-45.
-
(2010)
Stem cells
, vol.28
, pp. 1435-1445
-
-
Battula, V.L.1
Evans, K.W.2
Hollier, B.G.3
Shi, Y.4
-
70
-
-
51449085561
-
Generation of breast cancer stem cells through epithelial-mesenchymal transition
-
Morel AP, Lievre M, Thomas C, Hinkal G, et al. 2008. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS ONE 3: e2888.
-
(2008)
PloS ONE
, vol.3
-
-
Morel, A.P.1
Lievre, M.2
Thomas, C.3
Hinkal, G.4
-
71
-
-
79959994448
-
SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells
-
291.e1-5
-
Hwang WL, Yang MH, Tsai ML, Lan HY, et al. 2011. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology 141: 279-91, 291.e1-5.
-
(2011)
Gastroenterology
, vol.141
, pp. 279-291
-
-
Hwang, W.L.1
Yang, M.H.2
Tsai, M.L.3
Lan, H.Y.4
-
72
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M, Narita M, et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-72.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
Narita, M.4
-
73
-
-
65349097905
-
Stem cell sates, fates, and the rule of attraction
-
Enver T, Pera M, Peterson C, Andrews PW. 2009. Stem cell sates, fates, and the rule of attraction. Cell Stem Cell 4: 387-97.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 387-397
-
-
Enver, T.1
Pera, M.2
Peterson, C.3
Andrews, P.W.4
-
74
-
-
66449090934
-
Reprogramming cell fates: reconciling rarity with robustness
-
Huang S. 2009. Reprogramming cell fates: reconciling rarity with robustness. BioEssays 31: 546-60.
-
(2009)
BioEssays
, vol.31
, pp. 546-560
-
-
Huang, S.1
-
75
-
-
77957551870
-
A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
-
Li R, Liang J, Ni S, Zhou T, et al. 2010. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7: 51-63.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 51-63
-
-
Li, R.1
Liang, J.2
Ni, S.3
Zhou, T.4
-
76
-
-
79959929522
-
E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming
-
Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, et al. 2011. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 12: 720-6.
-
(2011)
EMBO Rep
, vol.12
, pp. 720-726
-
-
Redmer, T.1
Diecke, S.2
Grigoryan, T.3
Quiroga-Negreira, A.4
-
77
-
-
77955801632
-
E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation
-
Chen T, Yuan D, Wei B, Jiang J, et al. 2010. E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 28: 1315-25.
-
(2010)
Stem Cells
, vol.28
, pp. 1315-1325
-
-
Chen, T.1
Yuan, D.2
Wei, B.3
Jiang, J.4
-
78
-
-
78650881444
-
BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone
-
Chen J, Liu J, Yang J, Chen Y, et al. 2011. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. Cell Res 21: 205-12.
-
(2011)
Cell Res
, vol.21
, pp. 205-212
-
-
Chen, J.1
Liu, J.2
Yang, J.3
Chen, Y.4
-
79
-
-
79955755007
-
MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition
-
Liao B, Bao X, Liu L, Feng S, et al. 2011. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286: 17359-64.
-
(2011)
J Biol Chem
, vol.286
, pp. 17359-17364
-
-
Liao, B.1
Bao, X.2
Liu, L.3
Feng, S.4
-
80
-
-
77956320116
-
Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
-
Samavarchi-Tehrani P, Golipour A, David L, Sung HK, et al. 2010. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7: 64-77.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 64-77
-
-
Samavarchi-Tehrani, P.1
Golipour, A.2
David, L.3
Sung, H.K.4
-
81
-
-
82255175382
-
Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial
-
Bolli R, Chugh AR, D'Amario D, Loughran JH, et al. 2011. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378: 1847-57.
-
(2011)
Lancet
, vol.378
, pp. 1847-1857
-
-
Bolli, R.1
Chugh, A.R.2
D'Amario, D.3
Loughran, J.H.4
-
82
-
-
84858019974
-
Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial
-
Makkar RR, Smith RR, Cheng K, Malliaras K, et al. 2012. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 397: 895-904.
-
(2012)
Lancet
, vol.397
, pp. 895-904
-
-
Makkar, R.R.1
Smith, R.R.2
Cheng, K.3
Malliaras, K.4
-
83
-
-
84855490676
-
Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature
-
Xu H, Yi BA, Wu H, Bock C, et al. 2012. Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res 22: 142-54.
-
(2012)
Cell Res
, vol.22
, pp. 142-154
-
-
Xu, H.1
Yi, B.A.2
Wu, H.3
Bock, C.4
-
84
-
-
84863626782
-
Heart repair by reprograming non-myocytes with cardiac transcription factors
-
Song K, Nam Y-J, Luo X, Qi X, et al. 2012. Heart repair by reprograming non-myocytes with cardiac transcription factors. Nature 485: 599-604.
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
Nam, Y.-J.2
Luo, X.3
Qi, X.4
-
85
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
Qian L, Huang Y, Spencer CI, Foley A, et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485: 593-8.
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
Huang, Y.2
Spencer, C.I.3
Foley, A.4
-
86
-
-
84859531037
-
Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease
-
Kovacic JC, Mercader N, Torres M, Boehm M, et al. 2012. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125: 1795-808.
-
(2012)
Circulation
, vol.125
, pp. 1795-1808
-
-
Kovacic, J.C.1
Mercader, N.2
Torres, M.3
Boehm, M.4
-
87
-
-
84862284813
-
Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease
-
von Gise A, Pu WT. 2012. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110: 1628-45.
-
(2012)
Circ Res
, vol.110
, pp. 1628-1645
-
-
von Gise, A.1
Pu, W.T.2
-
88
-
-
84863096257
-
The arterial and cardiac epicardium in development, disease and repair
-
Gittenberger-de-Groot AC, Winter EM, Bartelings MM, Goumans MJ, et al. 2012. The arterial and cardiac epicardium in development, disease and repair. Differentiation 84: 41-53.
-
(2012)
Differentiation
, vol.84
, pp. 41-53
-
-
Gittenberger-de-Groot, A.C.1
Winter, E.M.2
Bartelings, M.M.3
Goumans, M.J.4
-
89
-
-
82755170946
-
Adult cardiac-resident MSC-like stem cells with a proepicardial origin
-
Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, et al. 2011. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9: 527-40.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 527-540
-
-
Chong, J.J.1
Chandrakanthan, V.2
Xaymardan, M.3
Asli, N.S.4
-
90
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
-
Kikuchi K, Holdway JE, Werdich AA, Anderson RM, et al. 2010. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601-5.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
Holdway, J.E.2
Werdich, A.A.3
Anderson, R.M.4
-
91
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina A, Coon AN, Kikuchi K, Holdway JE, et al. 2006. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127: 607-19.
-
(2006)
Cell
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
Coon, A.N.2
Kikuchi, K.3
Holdway, J.E.4
-
92
-
-
79952527330
-
Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
-
Kikuchi K, Holdway JE, Major RJ, Blum N, et al. 2011. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20: 397-404.
-
(2011)
Dev Cell
, vol.20
, pp. 397-404
-
-
Kikuchi, K.1
Holdway, J.E.2
Major, R.J.3
Blum, N.4
-
93
-
-
78049235110
-
PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts
-
Kim J, Wu Q, Zhang Y, Wiens KM, et al. 2010. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci USA 107: 17206-10.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 17206-17210
-
-
Kim, J.1
Wu, Q.2
Zhang, Y.3
Wiens, K.M.4
-
94
-
-
80054687219
-
In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFbeta-signaling and WT1
-
Bax NA, van Oorschot AA, Maas S, Braun J, et al. 2011. In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFbeta-signaling and WT1. Basic Res Cardiol 106: 829-47.
-
(2011)
Basic Res Cardiol
, vol.106
, pp. 829-847
-
-
Bax, N.A.1
van Oorschot, A.A.2
Maas, S.3
Braun, J.4
-
95
-
-
77957232737
-
Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart
-
Di Meglio F, Castaldo C, Nurzynska D, Romano V, et al. 2010. Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. J Mol Cell Cardiol 49: 719-27.
-
(2010)
J Mol Cell Cardiol
, vol.49
, pp. 719-727
-
-
Di Meglio, F.1
Castaldo, C.2
Nurzynska, D.3
Romano, V.4
-
96
-
-
77953665601
-
A new direction for cardiac regeneration therapy: application of synergistially acting epicardium-derived cells and cardiomyocyte precursor cells
-
Winter EM, Van Oorschot AA, Hogers B, van der Graaf LM, et al. 2009. A new direction for cardiac regeneration therapy: application of synergistially acting epicardium-derived cells and cardiomyocyte precursor cells. Circ Heart Fail 2: 643-53.
-
(2009)
Circ Heart Fail
, vol.2
, pp. 643-653
-
-
Winter, E.M.1
Van Oorschot, A.A.2
Hogers, B.3
van der Graaf, L.M.4
-
97
-
-
79955498411
-
Adult mouse epicadrium modulates myodardial injury by secreting paracrine factors
-
Zhou B, Honor LB, He H, Ma Q, et al. 2011. Adult mouse epicadrium modulates myodardial injury by secreting paracrine factors. J Clin Invest 121: 1894-904.
-
(2011)
J Clin Invest
, vol.121
, pp. 1894-1904
-
-
Zhou, B.1
Honor, L.B.2
He, H.3
Ma, Q.4
-
98
-
-
77954729235
-
Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia
-
Gittenberger-de Groot AC, Winter EM, Poelmann RE. 2010. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med 14: 1056-60.
-
(2010)
J Cell Mol Med
, vol.14
, pp. 1056-1060
-
-
Gittenberger-de Groot, A.C.1
Winter, E.M.2
Poelmann, R.E.3
-
99
-
-
32944480771
-
Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation
-
Limana F, Germani A, Zacheo A, Kajstura J, et al. 2005. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 97: e73-83.
-
(2005)
Circ Res
, vol.97
-
-
Limana, F.1
Germani, A.2
Zacheo, A.3
Kajstura, J.4
-
100
-
-
33846243239
-
Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization
-
Smart N, Risebro CA, Melville AA, Moses K, et al. 2007. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445: 177-82.
-
(2007)
Nature
, vol.445
, pp. 177-182
-
-
Smart, N.1
Risebro, C.A.2
Melville, A.A.3
Moses, K.4
-
101
-
-
63549141609
-
Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo
-
Bock-Marquette I, Shrivastava S, Pipes GCT, Thatcher JE, et al. 2010. Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol 46: 728-38.
-
(2010)
J Mol Cell Cardiol
, vol.46
, pp. 728-738
-
-
Bock-Marquette, I.1
Shrivastava, S.2
Pipes, G.C.T.3
Thatcher, J.E.4
-
102
-
-
79959819263
-
De novo cardiomyocytes from within the activated adult heart after injury
-
Smart N, Bollini S, Dube KN, Vieira JM, et al. 2011. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474: 640-4.
-
(2011)
Nature
, vol.474
, pp. 640-644
-
-
Smart, N.1
Bollini, S.2
Dube, K.N.3
Vieira, J.M.4
-
103
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
Qian L, Huang Y, Spencer CI, Foley A, et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485: 593-8.
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
Huang, Y.2
Spencer, C.I.3
Foley, A.4
-
104
-
-
84863625049
-
Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor
-
Ring KL, Tong LM, Balestra ME, Javier R, et al. 2012. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11: 100-9.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 100-109
-
-
Ring, K.L.1
Tong, L.M.2
Balestra, M.E.3
Javier, R.4
-
105
-
-
78649471039
-
Direct conversion of human fibroblasts to multilineage blood progenitors
-
Szabo E, Rampalli S, Risueno RM, Schnerch A, et al. 2010. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468: 521-6.
-
(2010)
Nature
, vol.468
, pp. 521-526
-
-
Szabo, E.1
Rampalli, S.2
Risueno, R.M.3
Schnerch, A.4
-
106
-
-
84862070237
-
Maintaining differentiated cellular identity
-
Holmberg J, Perlmann T. 2012. Maintaining differentiated cellular identity. Nat Rev Genet 13: 429-39.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 429-439
-
-
Holmberg, J.1
Perlmann, T.2
-
107
-
-
79959427955
-
tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
-
Kikuchi K, Gupta V, Wang J, Holdway JE, et al. 2011. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138: 2895-902.
-
(2011)
Development
, vol.138
, pp. 2895-2902
-
-
Kikuchi, K.1
Gupta, V.2
Wang, J.3
Holdway, J.E.4
|