-
1
-
-
33847724635
-
A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation
-
Mar
-
B. H. Calhoun and A. P. Chandrakasan, "A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation," IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 680-688, Mar. 2007.
-
(2007)
IEEE J. Solid-State Circuits
, vol.42
, Issue.3
, pp. 680-688
-
-
Calhoun, B.H.1
Chandrakasan, A.P.2
-
2
-
-
85008054031
-
A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy
-
Jan
-
N. Verma and A. P. Chandrakasan, "A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy," IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 141-149, Jan. 2008.
-
(2008)
IEEE J. Solid-State Circuits
, vol.43
, Issue.1
, pp. 141-149
-
-
Verma, N.1
Chandrakasan, A.P.2
-
3
-
-
57849151111
-
An 8T subthreshold SRAM cell utilizing reverse short channel effect for write margin and read performance improvement
-
T. H. Kim, J. Liu, and C. H. Kim, "An 8T subthreshold SRAM cell utilizing reverse short channel effect for write margin and read performance improvement," in Proc. IEEE CICC, 2007, pp. 241-244.
-
(2007)
Proc. IEEE CICC
, pp. 241-244
-
-
Kim, T.H.1
Liu, J.2
Kim, C.H.3
-
4
-
-
80255136207
-
A 250 mV 8 kb 40 nm ultra-low power 9T Supply Feedback SRAM (SF-SRAM)
-
Nov
-
A. Teman, L. Pergament, O. Cohen, and A. Fish, "A 250 mV 8 kb 40 nm ultra-low power 9T Supply Feedback SRAM (SF-SRAM)," IEEE J. Solid- State Circuits, vol. 46, no. 11, pp. 2713-2726, Nov. 2011.
-
(2011)
IEEE J. Solid- State Circuits
, vol.46
, Issue.11
, pp. 2713-2726
-
-
Teman, A.1
Pergament, L.2
Cohen, O.3
Fish, A.4
-
5
-
-
84856277403
-
Ultralow-voltage process-variation-tolerant schmitt-trigger-based SRAM design
-
Feb
-
J. P. Kulkarni and K. Roy, "Ultralow-voltage process-variation- tolerant schmitt-trigger-based SRAM design," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 2, pp. 319-332, Feb. 2012.
-
(2012)
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
, vol.20
, Issue.2
, pp. 319-332
-
-
Kulkarni, J.P.1
Roy, K.2
-
6
-
-
33947694725
-
An SRAM design in 65-nm technology node featuring read and writeassist circuits to expand operating voltage
-
Apr
-
H. Pilo, C. Barwin, G. Braceras, C. Browning, S. Lamphier, and F. Towler, "An SRAM design in 65-nm technology node featuring read and writeassist circuits to expand operating voltage," IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 813-819, Apr. 2007.
-
(2007)
IEEE J. Solid-State Circuits
, vol.42
, Issue.4
, pp. 813-819
-
-
Pilo, H.1
Barwin, C.2
Braceras, G.3
Browning, C.4
Lamphier, S.5
Towler, F.6
-
7
-
-
84873410462
-
-
Patent 7313012, Dec. 25
-
C. Chuang, J. J. Kim, and K. Kim, "Back-gate controlled asymmetrical memory cell and memory using the cell," Patent 7313012, Dec. 25, 2007.
-
(2007)
Back-gate controlled asymmetrical memory cell and memory using the cell
-
-
Chuang, C.1
Kim, J.J.2
Kim, K.3
-
8
-
-
80255131381
-
Characterization of dynamic SRAM stability in 45 nm CMOS
-
Nov
-
S. Toh, G. Zheng, T.-J. K. Liu, and B. Nikolic, "Characterization of dynamic SRAM stability in 45 nm CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2702-2712, Nov. 2011.
-
(2011)
IEEE J. Solid-State Circuits
, vol.46
, Issue.11
, pp. 2702-2712
-
-
Toh, S.1
Zheng, G.2
Liu, T.-J.K.3
Nikolic, B.4
-
9
-
-
0023437909
-
Static-noise margin analysis of MOS SRAM cells
-
Oct
-
E. Seevinck, F. J. List, and J. Lohstroh, "Static-noise margin analysis of MOS SRAM cells," IEEE J. Solid-State Circuits, vol. SSC-22, no. 5, pp. 748-754, Oct. 1987.
-
(1987)
IEEE J. Solid-State Circuits
, vol.22
, Issue.5
, pp. 748-754
-
-
Seevinck, E.1
List, F.J.2
Lohstroh, J.3
-
10
-
-
57549111680
-
Analyzing static and dynamic write margin for nanometer SRAMs
-
J. Wang, S. Nalam, and B. H. Calhoun, "Analyzing static and dynamic write margin for nanometer SRAMs," in Proc. IEEE ISLPED, 2008, pp. 129-134.
-
(2008)
Proc. IEEE ISLPED
, pp. 129-134
-
-
Wang, J.1
Nalam, S.2
Calhoun, B.H.3
-
11
-
-
79955594321
-
Reexamination of SRAM cell write margin definitions in view of predicting the distribution
-
Apr
-
H. Makino, S. Nakata, H. Suzuki, S. Mutoh, M. Miyama, T. Yoshimura, S. Iwade, and Y. Matsuda, "Reexamination of SRAM cell write margin definitions in view of predicting the distribution," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 4, pp. 230-234, Apr. 2011.
-
(2011)
IEEE Trans. Circuits Syst. II, Exp. Briefs
, vol.58
, Issue.4
, pp. 230-234
-
-
Makino, H.1
Nakata, S.2
Suzuki, H.3
Mutoh, S.4
Miyama, M.5
Yoshimura, T.6
Iwade, S.7
Matsuda, Y.8
-
12
-
-
31344451652
-
A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply
-
Jan
-
K. Zhang, U. Bhattacharya, C. Zhanping, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, "A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply," IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 146-151, Jan. 2006.
-
(2006)
IEEE J. Solid-State Circuits
, vol.41
, Issue.1
, pp. 146-151
-
-
Zhang, K.1
Bhattacharya, U.2
Zhanping, C.3
Hamzaoglu, F.4
Murray, D.5
Vallepalli, N.6
Wang, Y.7
Zheng, B.8
Bohr, M.9
-
13
-
-
77956218610
-
Separatrices in high-dimensional state space: System-theoretical tangent computation and application to SRAM dynamic stability analysis
-
Y. Zhang, P. Li, and G. M. Huang, "Separatrices in high-dimensional state space: System-theoretical tangent computation and application to SRAM dynamic stability analysis," in Proc. ACM/IEEE DAC, 2010, pp. 567-572.
-
(2010)
Proc. ACM/IEEE DAC
, pp. 567-572
-
-
Zhang, Y.1
Li, P.2
Huang, G.M.3
-
14
-
-
84855880071
-
A minimum leakage quasi-static RAM bitcell
-
May
-
A. Teman, L. Pergament, O. Cohen, and A. Fish, "A minimum leakage quasi-static RAM bitcell," J. Low Power Electron. Appl., vol. 1, no. 1, pp. 204-218, May 2011.
-
(2011)
J. Low Power Electron. Appl.
, vol.1
, Issue.1
, pp. 204-218
-
-
Teman, A.1
Pergament, L.2
Cohen, O.3
Fish, A.4
|