메뉴 건너뛰기




Volumn 15, Issue 1, 2013, Pages 80-112

Machine learning with squared-loss mutual information

Author keywords

Causal inference; Clustering; Density ratio estimation; Dimensionality reduction; Independence testing; Independent component analysis; Machine learning; Object matching; Pearson divergence; Squared loss mutual information

Indexed keywords


EID: 84873194326     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e15010080     Document Type: Review
Times cited : (46)

References (127)
  • 1
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • Shannon, C. A mathematical theory of communication. AT&T Tech. J. 1948, 27, 379-423.
    • (1948) AT&T Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.1
  • 4
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134-1140.
    • (1986) Phys. Rev. A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 6
    • 0032641874 scopus 로고    scopus 로고
    • Estimation of the information by an adaptive partitioning of the observation space
    • Darbellay, G.A.; Vajda, I. Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans. Inf. Theory 1999, 45, 1315-1321.
    • (1999) IEEE Trans. Inf. Theory , vol.45 , pp. 1315-1321
    • Darbellay, G.A.1    Vajda, I.2
  • 7
    • 26444495559 scopus 로고    scopus 로고
    • Divergence estimation of continuous distributions based on data-dependent partitions
    • Wang, Q.; Kulkarmi, S.R.; Verd́u, S. Divergence estimation of continuous distributions based on data-dependent partitions. IEEE Trans. Inf. Theory 2005, 51, 3064-3074.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , pp. 3064-3074
    • Wang, Q.1    Kulkarmi, S.R.2    Verd́u, S.3
  • 10
    • 34547962800 scopus 로고    scopus 로고
    • Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data
    • Khan, S.; Bandyopadhyay, S.; Ganguly, A.; Saigal, S. Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Phys. Rev. E 2007, 76, 026209.
    • (2007) Phys. Rev. E , vol.76 , pp. 026209
    • Khan, S.1    Bandyopadhyay, S.2    Ganguly, A.3    Saigal, S.4
  • 12
    • 22944483445 scopus 로고    scopus 로고
    • Edgeworth approximation of multivariate differential entropy
    • Van Hulle, M.M. Edgeworth approximation of multivariate differential entropy. Neural Comput. 2005, 17, 1903-1910.
    • (2005) Neural Comput , vol.17 , pp. 1903-1910
    • Van Hulle, M.M.1
  • 15
    • 77958588617 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by convex risk minimization
    • Nguyen, X.;Wainwright, M.J.; Jordan, M.I. Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Trans. Inf. Theory 2010, 56, 5847-5861.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , pp. 5847-5861
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 17
    • 0001640740 scopus 로고    scopus 로고
    • Robust and efficient estimation by minimising a density power divergence
    • Basu, A.; Harris, I.R.; Hjort, N.L.; Jones, M.C. Robust and efficient estimation by minimising a density power divergence. Biometrika 1998, 85, 549-559.
    • (1998) Biometrika , vol.85 , pp. 549-559
    • Basu, A.1    Harris, I.R.2    Hjort, N.L.3    Jones, M.C.4
  • 18
    • 84865400174 scopus 로고    scopus 로고
    • Density ratio matching under the bregman divergence: A unified framework of density ratio estimation
    • Sugiyama, M.; Suzuki, T.; Kanamori, T. Density ratio matching under the bregman divergence: A unified framework of density ratio estimation. Ann. I. Stat. Math. 2012, 64, 1009-1044.
    • (2012) Ann. I. Stat. Math. , vol.64 , pp. 1009-1044
    • Sugiyama, M.1    Suzuki, T.2    Kanamori, T.3
  • 19
    • 60849121715 scopus 로고    scopus 로고
    • Mutual information estimation reveals global associations between stimuli and biological processes
    • S52:1-S52
    • Suzuki, T.; Sugiyama, M.; Kanamori, T.; Sese, J. Mutual information estimation reveals global associations between stimuli and biological processes. BMC Bioinf. 2009, 10, S52:1-S52:12.
    • (2009) BMC Bioinf , vol.10 , pp. 12
    • Suzuki, T.1    Sugiyama, M.2    Kanamori, T.3    Sese, J.4
  • 20
    • 0001454867 scopus 로고
    • On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
    • Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Series 5 1900, 50, 157-175.
    • (1900) Philos. Mag. Series , vol.5 , Issue.50 , pp. 157-175
    • Pearson, K.1
  • 21
    • 0001199215 scopus 로고
    • A general class of coefficients of divergence of one distribution from another
    • Ali, S.M.; Silvey, S.D. A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc. Series B 1966, 28, 131-142.
    • (1966) J. R. Stat. Soc. Series B , vol.28 , pp. 131-142
    • Ali, S.M.1    Silvey, S.D.2
  • 22
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observation
    • Csisźar, I. Information-type measures of difference of probability distributions and indirect observation. Stud. Sci. Math. Hung. 1967, 2, 229-318.
    • (1967) Stud. Sci. Math. Hung. , vol.2 , pp. 229-318
    • Csisźar, I.1
  • 23
    • 68949141755 scopus 로고    scopus 로고
    • A least-squares approach to direct importance estimation
    • Kanamori, T.; Hido, S.; Sugiyama, M. A least-squares approach to direct importance estimation. J. Mach. Learn. Res. 2009, 10, 1391-1445.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1391-1445
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 24
    • 84867133788 scopus 로고    scopus 로고
    • Statistical Analysis of kernel-based least-squares density-ratio estimation
    • Kanamori, T.; Suzuki, T.; Sugiyama, M. Statistical Analysis of kernel-based least-squares density-ratio estimation. Mach. Learn. 2012, 86, 335-367.
    • (2012) Mach. Learn. , vol.86 , pp. 335-367
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 25
    • 84873130598 scopus 로고    scopus 로고
    • Computational complexity of kernel-based density-ratio estimation
    • arXiv:0912
    • Kanamori, T.; Suzuki, T.; Sugiyama, M. Computational complexity of kernel-based density-ratio estimation: A condition number analysis. 2009, arXiv:0912.2800.
    • (2009) A condition number analysis , pp. 2800
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 26
    • 79957961649 scopus 로고    scopus 로고
    • Least-squares independence test
    • Sugiyama, M.; Suzuki, T. Least-squares independence test. IEICE T. Inf. Syst. 2011, E94-D, 1333-1336.
    • (2011) IEICE T. Inf. Syst. , vol.E94D , pp. 1333-1336
    • Sugiyama, M.1    Suzuki, T.2
  • 29
    • 84876840196 scopus 로고    scopus 로고
    • Computationally Efficient Sufficient Dimension Reduction via Squared-Loss Mutual Information
    • Hsu, C.N., Lee, W.S., Eds., JMLR Workshop and Conference Proceedings
    • Yamada, M.; Niu, G.; Takagi, J.; Sugiyama, M. Computationally Efficient Sufficient Dimension Reduction via Squared-Loss Mutual Information. In Proceedings of the Third Asian Conference on Machine Learning (ACML2011); Hsu, C.N., Lee, W.S., Eds.; 2011; Volume 20, JMLR Workshop and Conference Proceedings, pp. 247-262.
    • (2011) Proceedings of the Third Asian Conference on Machine Learning (ACML2011); , vol.20 , pp. 247-262
    • Yamada, M.1    Niu, G.2    Takagi, J.3    Sugiyama, M.4
  • 30
    • 84865419682 scopus 로고    scopus 로고
    • Sugiyama. Canonical dependency analysis based on squared-loss mutual information
    • Karasuyama, M. Sugiyama. Canonical dependency analysis based on squared-loss mutual information. Neural Netw. 2012, 34, 46-55.
    • (2012) Neural Netw , vol.34 , pp. 46-55
    • Karasuyama, M.1
  • 31
    • 78650608280 scopus 로고    scopus 로고
    • Least-squares independent component analysis
    • Suzuki, T.; Sugiyama, M. Least-squares independent component analysis. Neural Comput. 2011, 23, 284-301.
    • (2011) Neural Comput , vol.23 , pp. 284-301
    • Suzuki, T.1    Sugiyama, M.2
  • 34
    • 80052988237 scopus 로고    scopus 로고
    • Dependence-maximization clustering with least-squares mutual information
    • Kimura, M.; Sugiyama, M. Dependence-maximization clustering with least-squares mutual information. J. Adv. Comput. Intell. Intell. Inf. 2011, 15, 800-805.
    • (2011) J. Adv. Comput. Intell. Intell. Inf. , vol.15 , pp. 800-805
    • Kimura, M.1    Sugiyama, M.2
  • 35
    • 77958598373 scopus 로고    scopus 로고
    • Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise
    • The AAAI Press: Atlanta, Georgia, USA
    • Yamada, M.; Sugiyama, M. Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI2010); The AAAI Press: Atlanta, Georgia, USA, 2010; pp. 643-648.
    • (2010) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI2010); , pp. 643-648
    • Yamada, M.1    Sugiyama, M.2
  • 38
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. Theory of reproducing kernels. T. Am. Math. Soc. 1950, 68, 337-404.
    • (1950) T. Am. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 39
    • 84873204185 scopus 로고    scopus 로고
    • Available online (accessed on 7 December 2012)
    • Least-Squares Mutual Information (LSMI). Available online: http://sugiyama-www.cs.titech.ac. jp/_sugi/software/LSMI/ (accessed on 7 December 2012).
    • Least-Squares Mutual Information (LSMI)
  • 41
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie, T.; Rosset, S.; Tibshirani, R.; Zhu, J. The entire regularization path for the support vector machine. J. Mach. Learn. Res. 2004, 5, 1391-1415.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 42
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • G̈artner, T. A survey of kernels for structured data. SIGKDD Explor. 2003, 5, S268-S275.
    • (2003) SIGKDD Explor , vol.5
    • G̈artner, T.1
  • 45
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Steinwart, I. On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2001, 2, 67-93.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 48
    • 84873170050 scopus 로고    scopus 로고
    • (accessed on 7 December 2012) Least-Squares Independence Test (LSIT). Available online
    • Least-Squares Independence Test (LSIT). Available online: http://sugiyama-www.cs.titech.ac.jp/_sugi/software/LSIT/ (accessed on 7 December 2012).
  • 49
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 50
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and subset selection with the lasso
    • Tibshirani, R. Regression shrinkage and subset selection with the lasso. J. R. Stat. Soc. Series B 1996, 58, 267-288.
    • (1996) J. R. Stat. Soc. Series B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 52
    • 79960148097 scopus 로고    scopus 로고
    • Super-linear convergence of dual augmented Lagrangian algorithm for sparsity regularized estimation
    • Tomioka, R.; Suzuki, T.; Sugiyama, M. Super-linear convergence of dual augmented Lagrangian algorithm for sparsity regularized estimation. J. Mach. Learn. Res. 2011, 12, 1537-1586.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1537-1586
    • Tomioka, R.1    Suzuki, T.2    Sugiyama, M.3
  • 53
    • 84873149622 scopus 로고    scopus 로고
    • ℓ1-Ball. Available online (accessed on 7 December)
    • 1-Ball. Available online: http://wittawat.com/software/l1lsmi/ (accessed on 7 December).
  • 56
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • Li, K. Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 1991, 86, 316-342.
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 316-342
    • Li, K.1
  • 57
    • 84950441056 scopus 로고
    • On principal hessian directions for data visualization and dimension reduction: another application of Stein's lemma
    • Li, K. On principal hessian directions for data visualization and dimension reduction: another application of Stein's lemma. J. Am. Stat. Assoc. 1992, 87, 1025-1039.
    • (1992) J. Am. Stat. Assoc. , vol.87 , pp. 1025-1039
    • Li, K.1
  • 58
    • 0040753656 scopus 로고    scopus 로고
    • Save: A method for dimension reduction and graphics in regression
    • Cook, R.D. SAVE: A method for dimension reduction and graphics in regression. Commun. Stat. Theory 2000, 29, 2109-2121.
    • (2000) Commun. Stat. Theory , vol.29 , pp. 2109-2121
    • Cook, R.D.1
  • 59
    • 68649121147 scopus 로고    scopus 로고
    • Kernel dimension reduction in regression
    • Fukumizu, K.; Bach, F.R.; Jordan, M.I. Kernel dimension reduction in regression. Ann. Stat. 2009, 37, 1871-1905.
    • (2009) Ann. Stat. , vol.37 , pp. 1871-1905
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 61
    • 21744442796 scopus 로고    scopus 로고
    • Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold
    • Nishimori, Y.; Akaho, S. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 2005, 67, 106-135.
    • (2005) Neurocomputing , vol.67 , pp. 106-135
    • Nishimori, Y.1    Akaho, S.2
  • 62
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S. Natural gradient works efficiently in learning. Neural Comput. 1998, 10, 251-276.
    • (1998) Neural Comput , vol.10 , pp. 251-276
    • Amari, S.1
  • 63
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • Edelman, A.; Arias, T.A.; Smith, S.T. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix. Anal. A. 1998, 20, 303-353.
    • (1998) SIAM J. Matrix. Anal. A. , vol.20 , pp. 303-353
    • Edelman, A.1    Arias, T.A.2    Smith, S.T.3
  • 65
    • 84873121227 scopus 로고    scopus 로고
    • Available online (accessed on 7 December 2012)
    • Least-Squares Dimensionality Reduction (LSDR). Available online: http://sugiyama-www.cs. titech.ac.jp/_sugi/software/LSDR/ (accessed on 7 December 2012).
    • Least-Squares Dimensionality Reduction (LSDR)
  • 66
    • 0000665083 scopus 로고
    • Nonparametric estimates of a multivariate probability density
    • Epanechnikov, V. Nonparametric estimates of a multivariate probability density. Theor. Probab. Appl. 1969, 14, 153-158.
    • (1969) Theor. Probab. Appl. , vol.14 , pp. 153-158
    • Epanechnikov, V.1
  • 67
    • 84873203454 scopus 로고    scopus 로고
    • Available online (accessed on 7 December 2012)
    • Sufficient Component Analysis (SCA). Available online: http://sugiyama-www.cs.titech.ac.jp/_yamada/sca.html (accessed on 7 December 2012).
    • Sufficient Component Analysis (SCA)
  • 68
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling, H. Relations between two sets of variates. Biometrika 1936, 28, 321-377.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 69
    • 0026586030 scopus 로고
    • A self-organizing neural network that discovers surfaces in random-dot stereograms
    • Becker, S.; Hinton, G.E. A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 1992, 355, 161-163.
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 70
    • 0034304404 scopus 로고    scopus 로고
    • Kernel and nonlinear canonical correlation analysis
    • Fyfe, C.; Lai, P.L. Kernel and nonlinear canonical correlation analysis. Int. J. Neural Syst. 2000, 10, 365-377.
    • (2000) Int. J. Neural Syst. , vol.10 , pp. 365-377
    • Fyfe, C.1    Lai, P.L.2
  • 72
    • 84958962514 scopus 로고    scopus 로고
    • Kernel Canonical Correlation Analysis and Least Squares Support Vector Machines. In Proceedings of the International Conference on Artificial Neural Networks; Springer Berlin/Heidelberg
    • Germany
    • Gestel, T.V.; Suykens, J.; Brabanter, J.D.; Moor, B.D.; Vandewalle, J. Kernel Canonical Correlation Analysis and Least Squares Support Vector Machines. In Proceedings of the International Conference on Artificial Neural Networks; Springer Berlin/Heidelberg, Germany, 2001; Volume 2130, Lecture Notes in Computer Science, pp. 384-389.
    • (2001) Lecture Notes in Computer Science , vol.2130 , pp. 384-389
    • Gestel, T.V.1    Suykens, J.2    Brabanter, J.D.3    Moor, B.D.4    Vandewalle, J.5
  • 73
    • 84950771789 scopus 로고
    • Estimating optimal transformations for multiple regression and correlation
    • Breiman, L.; Friedman, J.H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc. 1985, 80, 580-598.
    • (1985) J. Am. Stat. Assoc. , vol.80 , pp. 580-598
    • Breiman, L.1    Friedman, J.H.2
  • 74
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach, F.; Jordan, M.I. Kernel independent component analysis. J. Mach. Learn. Res. 2002, 3, 1-48.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 1-48
    • Bach, F.1    Jordan, M.I.2
  • 75
    • 4344566021 scopus 로고    scopus 로고
    • Canonical correlation analysis based on information theory
    • Yin, X. Canonical correlation analysis based on information theory. J. Multivariate Anal. 2004, 91, 161-176.
    • (2004) J. Multivariate Anal. , vol.91 , pp. 161-176
    • Yin, X.1
  • 77
    • 84873142493 scopus 로고    scopus 로고
    • Available online (accessed on 7 December 2012)
    • Least-Squares Canonical Dependency Analysis (LSCDA). Available online: http://www.bic.kyoto-u.ac.jp/pathway/krsym/software/LSCDA/index.html (accessed on 7 December 2012).
    • Least-Squares Canonical Dependency Analysis (LSCDA)
  • 79
    • 33749754615 scopus 로고    scopus 로고
    • A New Learning Algorithm for Blind Signal Separation
    • Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds.; The MIT Press: Cambridge, MA, USA
    • Amari, S.; Cichocki, A.; Yang, H.H. A New Learning Algorithm for Blind Signal Separation. Advances in Neural Information Processing Systems 8; Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds.; The MIT Press: Cambridge, MA, USA, 1996; pp. 757-763.
    • (1996) Advances in Neural Information Processing Systems 8; , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 80
    • 43449083521 scopus 로고    scopus 로고
    • Sequential fixed-point ICA based on mutual information minimization
    • Van Hulle, M.M. Sequential fixed-point ICA based on mutual information minimization. Neural Comput. 2008, 20, 1344-1365.
    • (2008) Neural Comput , vol.20 , pp. 1344-1365
    • Van Hulle, M.M.1
  • 81
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
    • Jutten, C.; Herault, J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process. 1991, 24, 1-10.
    • (1991) Signal Process , vol.24 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 82
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyv̈arinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE T. Neural Networ. 1999, 10, 626.
    • (1999) IEEE T. Neural Networ. , vol.10 , pp. 626
    • Hyv̈arinen, A.1
  • 83
    • 84873195791 scopus 로고    scopus 로고
    • Available online (accessed on 7 December 2012)
    • Least-squares Independent Component Analysis. Available online: http://www.simplex.t. u-tokyo.ac.jp/_s-taiji/software/LICA/index.html (accessed on 7 December 2012).
    • Least-squares Independent Component Analysis
  • 85
    • 33646528415 scopus 로고    scopus 로고
    • Measuring Statistical Dependence with Hilbert-Schmidt Norms
    • Jain, S., Simon, H.U., Tomita, E., Eds.; Springer-Verlag: Berlin, Germany Lecture Notes in Artificial Intelligence
    • Gretton, A.; Bousquet, O.; Smola, A.; Scḧolkopf, B. Measuring Statistical Dependence with Hilbert-Schmidt Norms. In Algorithmic Learning Theory; Jain, S., Simon, H.U., Tomita, E., Eds.; Springer-Verlag: Berlin, Germany, 2005; Lecture Notes in Artificial Intelligence, pp. 63-77.
    • (2005) Algorithmic Learning Theory; , pp. 63-77
    • Gretton, A.1    Bousquet, O.2    Smola, A.3    Scḧolkopf, B.4
  • 88
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83-97.
    • (1955) Nav. Res. Logist. Q. , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 89
    • 84873145156 scopus 로고    scopus 로고
    • Available online (accessed on 7 December 2012)
    • Least-Squares Object Matching (LSOM). Available online: http://sugiyama-www.cs.titech.ac.jp/_yamada/lsom.html (accessed on 7 December 2012).
    • Least-Squares Object Matching (LSOM)
  • 90
    • 0001457509 scopus 로고
    • Some Methods for Classification and Analysis of Multivariate Observations
    • University of California Press: Berkeley, CA, USA
    • MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Vol. 1, pp. 281-297.
    • (1967) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 91
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • Girolami, M. Mercer kernel-based clustering in feature space. IEEE Trans. Neural Networ. 2002, 13, 780-784.
    • (2002) IEEE Trans. Neural Networ. , vol.13 , pp. 780-784
    • Girolami, M.1
  • 92
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. 2000, 22, 888-905.
    • (2000) IEEE Trans. Patt. Anal. , vol.22 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 93
    • 84899013108 scopus 로고    scopus 로고
    • On Spectral Clustering: Analysis and An Algorithm
    • Dietterich, T.G., Becker, S., Ghahramani, Z., Eds.; MIT Press: Cambridge, MA, USA
    • Ng, A.Y.; Jordan, M.I.;Weiss, Y. On Spectral Clustering: Analysis and An Algorithm. Advances in Neural Information Processing Systems 14; Dietterich, T.G., Becker, S., Ghahramani, Z., Eds.; MIT Press: Cambridge, MA, USA, 2002; pp. 849-856.
    • (2002) Advances in Neural Information Processing Systems 14; , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 94
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with application in pattern recognition
    • Fukunaga, K.; Hostetler, L.D. The estimation of the gradient of a density function, with application in pattern recognition. IEEE Trans. Inf. Theory 1975, 21, 32-40.
    • (1975) IEEE Trans. Inf. Theory , vol.21 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.D.2
  • 95
    • 34250739442 scopus 로고    scopus 로고
    • Fast Nonparametric Clustering with Gaussian Blurring Mean-Shift
    • Cohen, W., Moore, A., Eds.; Pittsburgh, Pennsylvania, USA, 25-29 June
    • Carreira-Perpi{ogonek}ńan, M.A. Fast Nonparametric Clustering with Gaussian Blurring Mean-Shift. In Proceedings of 23rd International Conference on Machine Learning (ICML2006); Cohen, W., Moore, A., Eds.; Pittsburgh, Pennsylvania, USA, 25-29 June 2006; pp. 153-160.
    • (2006) Proceedings of 23rd International Conference on Machine Learning (ICML2006); , pp. 153-160
    • Carreira-Perpińan, M.A.1
  • 97
    • 85161978168 scopus 로고    scopus 로고
    • DIFFRAC: A Discriminative and Flexible Framework for Clustering
    • Platt, J.C., Koller, D., Singer, Y., Roweis, S., Eds.; MIT Press: Cambridge, MA, USA
    • Bach, F.; Harchaoui, Z. DIFFRAC: A Discriminative and Flexible Framework for Clustering. Advances in Neural Information Processing Systems 20; Platt, J.C., Koller, D., Singer, Y., Roweis, S., Eds.; MIT Press: Cambridge, MA, USA, 2008; pp. 49-56.
    • (2008) Advances in Neural Information Processing Systems 20; , pp. 49-56
    • Bach, F.1    Harchaoui, Z.2
  • 100
    • 84864053268 scopus 로고    scopus 로고
    • Kernelized Infomax Clustering
    • Weiss, Y., Scḧolkopf, B., Platt, J., Eds.; MIT Press: Cambridge, MA, USA
    • Agakov, F.; Barber, D. Kernelized Infomax Clustering. Advances in Neural Information Processing Systems 18; Weiss, Y., Scḧolkopf, B., Platt, J., Eds.; MIT Press: Cambridge, MA, USA, 2006; pp. 17-24.
    • (2006) Advances in Neural Information Processing Systems 18; , pp. 17-24
    • Agakov, F.1    Barber, D.2
  • 101
    • 85161986160 scopus 로고    scopus 로고
    • Discriminative Clustering by Regularized Information Maximization
    • Lafferty, J., Williams, C.K.I., Zemel, R., Shawe-Taylor, J., Culotta, A., Eds
    • Gomes, R.; Krause, A.; Perona, P. Discriminative Clustering by Regularized Information Maximization. Advances in Neural Information Processing Systems 23; Lafferty, J., Williams, C.K.I., Zemel, R., Shawe-Taylor, J., Culotta, A., Eds.; 2010; pp. 766-774.
    • (2010) Advances in Neural Information Processing Systems 23; , pp. 766-774
    • Gomes, R.1    Krause, A.2    Perona, P.3
  • 102
    • 84898995558 scopus 로고    scopus 로고
    • Self-Tuning Spectral Clustering
    • Saul, L.K., Weiss, Y., Bottou, L., Eds.; MIT Press: Cambridge, MA, USA
    • Zelnik-Manor, L.; Perona, P. Self-Tuning Spectral Clustering. Advances in Neural Information Processing Systems 17; Saul, L.K., Weiss, Y., Bottou, L., Eds.; MIT Press: Cambridge, MA, USA, 2005; pp. 1601-1608.
    • (2005) Advances in Neural Information Processing Systems 17; , pp. 1601-1608
    • Zelnik-Manor, L.1    Perona, P.2
  • 103
    • 84873176015 scopus 로고    scopus 로고
    • Available online (accessed on 7 December 2012)
    • SMI-based Clustering (SMIC). Available online: http://sugiyama-www.cs.titech.ac.jp/_sugi/software/SMIC/ (accessed on 7 December 2012).
    • SMI-based Clustering (SMIC)
  • 108
    • 84858789485 scopus 로고    scopus 로고
    • Nonlinear Causal Discovery with Additive Noise Models
    • Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Eds.; MIT Press: Cambridge, MA, USA
    • Hoyer, P.O.; Janzing, D.; Mooij, J.M.; Peters, J.; Scḧolkopf, B. Nonlinear Causal Discovery with Additive Noise Models. Advances in Neural Information Processing Systems 21; Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Eds.; MIT Press: Cambridge, MA, USA, 2009; pp. 689-696.
    • (2009) Advances in Neural Information Processing Systems 21; , pp. 689-696
    • Hoyer, P.O.1    Janzing, D.2    Mooij, J.M.3    Peters, J.4    Scḧolkopf, B.5
  • 111
    • 84873167231 scopus 로고    scopus 로고
    • Availble online (accessed on 7 December 2012)
    • Least-Squares Independence Regression (LSIR). Availble online: http://sugiyama-www.cs. titech.ac.jp/_yamada/lsir.html (accessed on 7 December 2012).
    • Least-Squares Independence Regression (LSIR)
  • 113
    • 78651496720 scopus 로고    scopus 로고
    • Statistical outlier detection using direct density ratio estimation
    • Hido, S.; Tsuboi, Y.; Kashima, H.; Sugiyama, M.; Kanamori, T. Statistical outlier detection using direct density ratio estimation. Knowl. Inf. Syst. 2011, 26, 309-336.
    • (2011) Knowl. Inf. Syst. , vol.26 , pp. 309-336
    • Hido, S.1    Tsuboi, Y.2    Kashima, H.3    Sugiyama, M.4    Kanamori, T.5
  • 114
    • 84858312965 scopus 로고    scopus 로고
    • Sequential change-point detection based on direct density-ratio estimation
    • Kawahara, Y.; Sugiyama, M. Sequential change-point detection based on direct density-ratio estimation. Stat. Anal. Data Min. 2012, 5, 114-127.
    • (2012) Stat. Anal. Data Min. , vol.5 , pp. 114-127
    • Kawahara, Y.1    Sugiyama, M.2
  • 115
    • 84868115661 scopus 로고    scopus 로고
    • Change-Point Detection in Time-Series Data by Relative Density-Ratio Estimation
    • Gimel'farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K., Eds.; Springer: Berlin, Germany, Lecture Notes in Computer Science
    • Liu, S.; Yamada, M.; Collier, N.; Sugiyama, M. Change-Point Detection in Time-Series Data by Relative Density-Ratio Estimation. In Structural, Syntactic, and Statistical Pattern Recognition; Gimel'farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K., Eds.; Springer: Berlin, Germany, 2012; Volume 7626, Lecture Notes in Computer Science, pp. 363-372.
    • (2012) Structural, Syntactic and Statistical Pattern Recognition; , vol.7626 , pp. 363-372
    • Liu, S.1    Yamada, M.2    Collier, N.3    Sugiyama, M.4
  • 118
    • 84863126130 scopus 로고    scopus 로고
    • f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models
    • Kanamori, T.; Suzuki, T.; Sugiyama, M. f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models. IEEE Trans. Inf. Theory 2012, 58, 708-720.
    • (2012) IEEE Trans. Inf. Theory , vol.58 , pp. 708-720
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 119
    • 77957851853 scopus 로고    scopus 로고
    • Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting
    • Sugiyama, M. Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting. IEICE Trans. Inf. Syst. 2010, E93-D, 2690-2701.
    • (2010) IEICE Trans. Inf. Syst. , vol.E93D , pp. 2690-2701
    • Sugiyama, M.1
  • 122
    • 70649085072 scopus 로고    scopus 로고
    • Dimensionality reduction for density ratio estimation in high-dimensional spaces
    • Sugiyama, M.; Kawanabe, M.; Chui, P.L. Dimensionality reduction for density ratio estimation in high-dimensional spaces. Neural Netw. 2010, 23, 44-59.
    • (2010) Neural Netw , vol.23 , pp. 44-59
    • Sugiyama, M.1    Kawanabe, M.2    Chui, P.L.3
  • 123
    • 79251612332 scopus 로고    scopus 로고
    • Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
    • Sugiyama, M.; Yamada, M.; von B̈unau, P.; Suzuki, T.; Kanamori, T.; Kawanabe, M. Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. Neural Netw. 2011, 24, 183-198.
    • (2011) Neural Netw , vol.24 , pp. 183-198
    • Sugiyama, M.1    Yamada, M.2    von B̈unau, P.3    Suzuki, T.4    Kanamori, T.5    Kawanabe, M.6
  • 124
    • 80055057089 scopus 로고    scopus 로고
    • Direct Density-Ratio Estimation with Dimensionality Reduction via Hetero-Distributional Subspace Analysis
    • The AAAI Press: San Francisco, California, USA
    • Yamada, M.; Sugiyama, M. Direct Density-Ratio Estimation with Dimensionality Reduction via Hetero-Distributional Subspace Analysis. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI2011); The AAAI Press: San Francisco, California, USA, 2011; pp. 549-554.
    • (2011) Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI2011); , pp. 549-554
    • Yamada, M.1    Sugiyama, M.2
  • 125
    • 85162457791 scopus 로고    scopus 로고
    • Relative Density-Ratio Estimation for Robust Distribution Comparison
    • Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q., Eds
    • Yamada, M.; Suzuki, T.; Kanamori, T.; Hachiya, H.; Sugiyama, M. Relative Density-Ratio Estimation for Robust Distribution Comparison. Advances in Neural Information Processing Systems 24; Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q., Eds.; 2011; pp. 594-602.
    • (2011) Advances in Neural Information Processing Systems 24 , pp. 594-602
    • Yamada, M.1    Suzuki, T.2    Kanamori, T.3    Hachiya, H.4    Sugiyama, M.5
  • 127
    • 84873158887 scopus 로고    scopus 로고
    • Software. Available online (accessed on 7 December 2012)
    • Software. Available online: http://sugiyama-www.cs.titech.ac.jp/_sugi/software/ (accessed on 7 December 2012).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.