메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 114-127

Sequential change-point detection based on direct density-ratio estimation

Author keywords

Change point detection; Density ratio estimation; Time series data

Indexed keywords

CHANGE DETECTION; MAXIMUM LIKELIHOOD ESTIMATION; TIME SERIES;

EID: 84858312965     PISSN: 19321872     EISSN: 19321864     Source Type: Journal    
DOI: 10.1002/sam.10124     Document Type: Article
Times cited : (173)

References (38)
  • 4
    • 85123650840 scopus 로고    scopus 로고
    • Detecting change in data streams, In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB'04)
    • D. Kifer, S. Ben-David, and J. Gehrke, Detecting change in data streams, In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB'04), 2004, 180-191.
    • (2004) , pp. 180-191
    • Kifer, D.1    Ben-David, S.2    Gehrke, J.3
  • 5
    • 0242540409 scopus 로고    scopus 로고
    • A unifying framework for detecting outliers and change points from non-stationary time series data, In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'02)
    • K. Yamanishi and J. Takeuchi, A unifying framework for detecting outliers and change points from non-stationary time series data, In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'02), 2002, 676-681.
    • (2002) , pp. 676-681
    • Yamanishi, K.1    Takeuchi, J.2
  • 6
    • 12244300520 scopus 로고    scopus 로고
    • Eigenspace-based anomaly detection in computer systems, In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'04)
    • T. Ide and H. Kashima, Eigenspace-based anomaly detection in computer systems, In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'04), 2004, 440-449.
    • (2004) , pp. 440-449
    • Ide, T.1    Kashima, H.2
  • 7
    • 49749093757 scopus 로고    scopus 로고
    • Change-point detection in time-series data based on subspace identification, In Proceedings of the 7th IEEE International Conference on Data Mining (ICDM'07), Omaha, NE
    • Y. Kawahara, T. Yairi, and K. Machida, Change-point detection in time-series data based on subspace identification, In Proceedings of the 7th IEEE International Conference on Data Mining (ICDM'07), Omaha, NE, 2007, 559-564.
    • (2007) , pp. 559-564
    • Kawahara, Y.1    Yairi, T.2    Machida, K.3
  • 8
    • 85196100157 scopus 로고    scopus 로고
    • Event detection from time series data, In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'99)
    • V. Guralnik and J. Srivastava, Event detection from time series data, In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'99), 1999, 33-42.
    • (1999) , pp. 33-42
    • Guralnik, V.1    Srivastava, J.2
  • 9
    • 84956863580 scopus 로고    scopus 로고
    • Unsupervised profiling for identifying superimposed fraud, In Proceedings of the 3rd European Conference Principles and Practice of Knowledge Discovery in Databases (PKDD'99)
    • U. Murad and G. Pinkas, Unsupervised profiling for identifying superimposed fraud, In Proceedings of the 3rd European Conference Principles and Practice of Knowledge Discovery in Databases (PKDD'99), 1999, 251-261.
    • (1999) , pp. 251-261
    • Murad, U.1    Pinkas, G.2
  • 10
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: a review
    • R. J. Bolton and D. J. Hand, Statistical fraud detection: a review, Stat Sci 17(3) (2002), 235-255.
    • (2002) Stat Sci , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.J.1    Hand, D.J.2
  • 11
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • K. Yamanishi, J. Takeuchi, G. Williams, and P. Milne, On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms, Data Mining Knowledge Disc 8(3) (2004), 275-300.
    • (2004) Data Mining Knowledge Disc , vol.8 , Issue.3 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.2    Williams, G.3    Milne, P.4
  • 12
    • 85196084462 scopus 로고    scopus 로고
    • Event detection in crowded videos, In Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV'07)
    • Y. Ke, R. Sukthankar, and M. Hebert, Event detection in crowded videos, In Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV'07), 2007, 1-8.
    • (2007) , pp. 1-8
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 13
    • 32344449062 scopus 로고    scopus 로고
    • An approach to spacecraft anomaly detection problem using kernel feature space, In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • R. Fujimaki, T. Yairi, and K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, 401-410.
    • (2005) , pp. 401-410
    • Fujimaki, R.1    Yairi, T.2    Machida, K.3
  • 14
    • 0029734184 scopus 로고    scopus 로고
    • The marginalized likelihood ratio test for detecting abrupt changes
    • F. Gustafsson, The marginalized likelihood ratio test for detecting abrupt changes, IEEE Trans Autom Contr 41(1) (1996), 66-78.
    • (1996) IEEE Trans Autom Contr , vol.41 , Issue.1 , pp. 66-78
    • Gustafsson, F.1
  • 15
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: a review-part 1: statistical approaches
    • M. Markou and S. Singh, Novelty detection: a review-part 1: statistical approaches, Signal Process 83(12) (2003), 2481-2497.
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 16
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: a review-part 2: neural network based approaches
    • M. Markou and S. Singh, Novelty detection: a review-part 2: neural network based approaches, Signal Process 83(12) (2003), 2499-2521.
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 17
    • 33644653840 scopus 로고    scopus 로고
    • A unifying framework for detecting outliers and change points from non-stationary time series data
    • Y. Takeuchi and K. Yamanishi, A unifying framework for detecting outliers and change points from non-stationary time series data, IEEE Trans Knowledge Data Eng 18(4) (2006), 482-489.
    • (2006) IEEE Trans Knowledge Data Eng , vol.18 , Issue.4 , pp. 482-489
    • Takeuchi, Y.1    Yamanishi, K.2
  • 18
    • 0037596703 scopus 로고    scopus 로고
    • An algorithm based on singular spectrum analysis for change-point detection
    • V. Moskvina and A. A. Zhigljavsky, An algorithm based on singular spectrum analysis for change-point detection, Commun Stat Simul Comput 32(2) (2003), 319-352.
    • (2003) Commun Stat Simul Comput , vol.32 , Issue.2 , pp. 319-352
    • Moskvina, V.1    Zhigljavsky, A.A.2
  • 20
    • 85040751730 scopus 로고    scopus 로고
    • Subspace Methods for System Identification: A Realization Approach
    • London, Springer-Verlag
    • T. Katayama, Subspace Methods for System Identification: A Realization Approach, In Communications and Control Engineering, London, Springer-Verlag, 2005.
    • (2005) Communications and Control Engineering
    • Katayama, T.1
  • 21
    • 0032286356 scopus 로고    scopus 로고
    • Time-dependent spectral analysis of nonstationary time series
    • S. Adak, Time-dependent spectral analysis of nonstationary time series, J Am Stat Assoc 93(444) (1998), 1488-1501.
    • (1998) J Am Stat Assoc , vol.93 , Issue.444 , pp. 1488-1501
    • Adak, S.1
  • 22
    • 85012564551 scopus 로고    scopus 로고
    • Automatic statistical analysis of bivariate non-stationary time series
    • H. C. Ombao, J. A. Raz, R. von Sachs, and B. A. Malow, Automatic statistical analysis of bivariate non-stationary time series, J Am Stat Assoc 96(454) (2001), 543-560.
    • (2001) J Am Stat Assoc , vol.96 , Issue.454 , pp. 543-560
    • Ombao, H.C.1    Raz, J.A.2    von Sachs, R.3    Malow, B.A.4
  • 23
    • 41149117124 scopus 로고    scopus 로고
    • Sequential change-point detection methods for nonstationary time series
    • H. Choi, H. Ombao, and B. Ray, Sequential change-point detection methods for nonstationary time series, Technometrics 50(1) (2008), 40-52.
    • (2008) Technometrics , vol.50 , Issue.1 , pp. 40-52
    • Choi, H.1    Ombao, H.2    Ray, B.3
  • 24
    • 0037286212 scopus 로고    scopus 로고
    • Computation and analysis of multiple structural change models
    • J. Bai and P. Perron, Computation and analysis of multiple structural change models, J Appl Econ 18(1) (2003), 1-22.
    • (2003) J Appl Econ , vol.18 , Issue.1 , pp. 1-22
    • Bai, J.1    Perron, P.2
  • 25
    • 33645513464 scopus 로고    scopus 로고
    • Structural break estimation for nonstationary time series models
    • R. A. Davis, T. C. M. Lee, and G. A. Rodriguez-Yam, Structural break estimation for nonstationary time series models, J Am Stat Assoc 101(473) (2006), 223-239.
    • (2006) J Am Stat Assoc , vol.101 , Issue.473 , pp. 223-239
    • Davis, R.A.1    Lee, T.C.M.2    Rodriguez-Yam, G.A.3
  • 33
    • 25444451110 scopus 로고    scopus 로고
    • An online kernel change detection algorithm
    • F. Desobry, M. Davy, and C. Doncarli, An online kernel change detection algorithm, IEEE Trans Signal Process 53(8) (2005), 2961-2974.
    • (2005) IEEE Trans Signal Process , vol.53 , Issue.8 , pp. 2961-2974
    • Desobry, F.1    Davy, M.2    Doncarli, C.3
  • 34
    • 0000920843 scopus 로고
    • Theory of adaptive pattern classifiers
    • EC
    • S. Amari, Theory of adaptive pattern classifiers, IEEE Trans Electron Comput EC-16(3) (1967), 299-307.
    • (1967) IEEE Trans Electron Comput , vol.16 , Issue.3 , pp. 299-307
    • Amari, S.1
  • 36
    • 85196111133 scopus 로고    scopus 로고
    • HOT SAX: Efficiently finding the most unusual time series subsequences, In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05)
    • E. Keogh, J. Lin, and A. Fu, HOT SAX: Efficiently finding the most unusual time series subsequences, In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05), 2005, 226-233.
    • (2005) , pp. 226-233
    • Keogh, E.1    Lin, J.2    Fu, A.3
  • 37
    • 70649085072 scopus 로고    scopus 로고
    • Dimensionality reduction for density ratio estimation in high-dimensional spaces
    • M. Sugiyama, M. Kawanabe, and P. L. Chui, Dimensionality reduction for density ratio estimation in high-dimensional spaces, Neural Networks 23(1) (2010), 44-59.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 44-59
    • Sugiyama, M.1    Kawanabe, M.2    Chui, P.L.3
  • 38
    • 79251612332 scopus 로고    scopus 로고
    • Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
    • M. Sugiyama, M. Yamada, P. von Bünau, T. Suzuki, T. Kanamori, and M. Kawanabe, Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search, Neural Networks 24(2) (2011), 183-198.
    • (2011) Neural Networks , vol.24 , Issue.2 , pp. 183-198
    • Sugiyama, M.1    Yamada, M.2    von Bünau, P.3    Suzuki, T.4    Kanamori, T.5    Kawanabe, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.