-
1
-
-
0001199215
-
A general class of coefficients of divergence of one distribution from another
-
Ali, S. M. and Silvey, S. D. A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society, Series B, 28:131-142, 1966.
-
(1966)
Journal of the Royal Statistical Society, Series B
, vol.28
, pp. 131-142
-
-
Ali, S.M.1
Silvey, S.D.2
-
2
-
-
0001640740
-
Robust and efficient estimation by minimising a density power divergence
-
Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3):549-559, 1998.
-
(1998)
Biometrika
, vol.85
, Issue.3
, pp. 549-559
-
-
Basu, A.1
Harris, I.R.2
Hjort, N.L.3
Jones, M.C.4
-
4
-
-
0004055894
-
-
Cambridge University Press, New York, NY, USA
-
Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004.
-
(2004)
Convex Optimization
-
-
Boyd, S.1
Vandenberghe, L.2
-
6
-
-
33749252873
-
-
MIT Press, Cambridge, MA, USA
-
Chapelle, O., Schölkopf, B., and Zien, A. (eds.). Semi-Supervised Learning. MIT Press, Cambridge, MA, USA, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
7
-
-
84858716912
-
AUC optimization and the two-sample problem
-
Clémençon, S., Vayatis, N., and Depecker, M. AUC optimization and the two-sample problem. In Advances in Neural Information Processing Systems 22, pp. 360-368, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 360-368
-
-
Clémençon, S.1
Vayatis, N.2
Depecker, M.3
-
9
-
-
0000489740
-
Information-type measures of difference of probability distributions and indirect observation
-
Csiszár, I. Information-type measures of difference of probability distributions and indirect observation. Studia Scientiarum Mathematicarum Hungarica, 2:229-318, 1967.
-
(1967)
Studia Scientiarum Mathematicarum Hungarica
, vol.2
, pp. 229-318
-
-
Csiszár, I.1
-
10
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, series B, 39(1):1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
0003684449
-
-
Springer, New York, NY, USA
-
Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY, USA, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
14
-
-
0000125534
-
Sample selection bias as a specification error
-
Heckman, J. J. Sample selection bias as a specification error. Econometrica, 47(1):153-161, 1979.
-
(1979)
Econometrica
, vol.47
, Issue.1
, pp. 153-161
-
-
Heckman, J.J.1
-
15
-
-
68949141755
-
A least-squares approach to direct importance estimation
-
Kanamori, T., Hido, S., and Sugiyama, M. A least-squares approach to direct importance estimation. Journal of Machine Learning Research, 10:1391-1445, 2009a.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1391-1445
-
-
Kanamori, T.1
Hido, S.2
Sugiyama, M.3
-
16
-
-
70649104230
-
-
Technical report, arXiv
-
Kanamori, T., Suzuki, T., and Sugiyama, M. Condition number analysis of kernel-based density ratio estimation. Technical report, arXiv, 2009b.
-
(2009)
Condition Number Analysis of Kernel-based Density Ratio Estimation
-
-
Kanamori, T.1
Suzuki, T.2
Sugiyama, M.3
-
17
-
-
84867133788
-
Statistical analysis of kernel-based least-squares density-ratio estimation
-
Kanamori, T., Suzuki, T., and Sugiyama, M. Statistical analysis of kernel-based least-squares density-ratio estimation. Machine Learning, 2012.
-
(2012)
Machine Learning
-
-
Kanamori, T.1
Suzuki, T.2
Sugiyama, M.3
-
18
-
-
0038236399
-
Dual representation of φ-divergences and applications
-
Keziou, A. Dual representation of φ-divergences and applications. Comptes Rendus Mathématique, 336(10):857-862, 2003.
-
(2003)
Comptes Rendus Mathématique
, vol.336
, Issue.10
, pp. 857-862
-
-
Keziou, A.1
-
20
-
-
4744367074
-
Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: Evidence from a multi-class problem in remote sensing
-
Latinne, P., Saerens, M., and Decaestecker, C. Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: Evidence from a multi-class problem in remote sensing. In Proceedings of the 18th International Conference on Machine Learning, pp. 298-305, 2001.
-
(2001)
Proceedings of the 18th International Conference on Machine Learning
, pp. 298-305
-
-
Latinne, P.1
Saerens, M.2
Decaestecker, C.3
-
21
-
-
0036161029
-
Support vector machines for classification in nonstandard situations
-
Lin, Y., Lee, Y., and Wahba, G. Support vector machines for classification in nonstandard situations. Machine Learning, 46(1/3):191-202, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
Wahba, G.3
-
23
-
-
77958588617
-
Estimating divergence functionals and the likelihood ratio by convex risk minimization
-
Nguyen, X., Wainwright, M. J., and Jordan, M. I. Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, 56(11):5847-5861, 2010.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.11
, pp. 5847-5861
-
-
Nguyen, X.1
Wainwright, M.J.2
Jordan, M.I.3
-
24
-
-
0001454867
-
On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
-
Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50:157-175, 1900.
-
(1900)
Philosophical Magazine
, vol.50
, pp. 157-175
-
-
Pearson, K.1
-
25
-
-
67149129014
-
-
MIT Press, Cambridge, MA, USA
-
Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. (eds.). Dataset Shift in Machine Learning. MIT Press, Cambridge, MA, USA, 2009.
-
(2009)
Dataset Shift in Machine Learning
-
-
Quiñonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.4
-
26
-
-
9444250658
-
Regularized least-squares classification. Advances in Learning Theory: Methods, Model and Applications
-
Rifkin, R., Yeo, G., and Poggio, T. Regularized least-squares classification. Advances in Learning Theory: Methods, Model and Applications. NATO Science Series III: Computer and Systems Sciences, 190:131-153, 2003.
-
(2003)
NATO Science Series III: Computer and Systems Sciences
, vol.190
, pp. 131-153
-
-
Rifkin, R.1
Yeo, G.2
Poggio, T.3
-
27
-
-
0004267646
-
-
Princeton University Press, Princeton, NJ, USA
-
Rockafellar, R. T. Convex Analysis. Princeton University Press, Princeton, NJ, USA, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
28
-
-
0036134369
-
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
-
Saerens, M., Patrice, M., and Decaestecker, C. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure. Neural Computation, 14:21-41, 2001.
-
(2001)
Neural Computation
, vol.14
, pp. 21-41
-
-
Saerens, M.1
Patrice, M.2
Decaestecker, C.3
-
31
-
-
77957851853
-
Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting
-
Sugiyama, M. Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting. IEICE Transactions on Information and Systems, E93-D:2690-2701, 2010.
-
(2010)
IEICE Transactions on Information and Systems
, vol.E93-D
, pp. 2690-2701
-
-
Sugiyama, M.1
-
32
-
-
84865369611
-
-
MIT Press, Cambridge, MA, USA
-
Sugiyama, M. and Kawanabe, M. Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation. MIT Press, Cambridge, MA, USA, 2012.
-
Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation
, vol.2012
-
-
Sugiyama, M.1
Kawanabe, M.2
-
33
-
-
55549114317
-
Direct importance estimation for covariate shift adaptation
-
Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P., and Kawanabe, M. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4):699-746, 2008.
-
(2008)
Annals of the Institute of Statistical Mathematics
, vol.60
, Issue.4
, pp. 699-746
-
-
Sugiyama, M.1
Suzuki, T.2
Nakajima, S.3
Kashima, H.4
Von Bünau, P.5
Kawanabe, M.6
|