메뉴 건너뛰기




Volumn 23, Issue 1, 2010, Pages 44-59

Dimensionality reduction for density ratio estimation in high-dimensional spaces

Author keywords

Density ratio estimation; Dimensionality reduction; Local Fisher discriminant analysis; Unconstrained least squares importance fitting

Indexed keywords

DENSITY RATIO; DENSITY RATIO ESTIMATION; DIMENSIONALITY REDUCTION; FISHER DISCRIMINANT ANALYSIS; LEAST SQUARE;

EID: 70649085072     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.07.007     Document Type: Article
Times cited : (47)

References (74)
  • 2
    • 0001912663 scopus 로고
    • Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates
    • Anderson N., Hall P., and Titterington D. Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates. Journal of Multivariate Analysis 50 (1994) 41-54
    • (1994) Journal of Multivariate Analysis , vol.50 , pp. 41-54
    • Anderson, N.1    Hall, P.2    Titterington, D.3
  • 3
    • 68949134159 scopus 로고
    • An algorithm for the solution of the parametric quadratic programming problem
    • Technical report 82-24. Faculty of Mathematics, University of Waterloo
    • Best, M. J. (1982). An algorithm for the solution of the parametric quadratic programming problem. Technical report 82-24. Faculty of Mathematics, University of Waterloo
    • (1982)
    • Best, M.J.1
  • 4
    • 27744479466 scopus 로고    scopus 로고
    • On the asymptotic properties of a nonparametric l1-test statistic of homogeneity
    • Biau G., and Gyorfi L. On the asymptotic properties of a nonparametric l1-test statistic of homogeneity. IEEE Transactions on Information Theory 51 (2005) 3965-3973
    • (2005) IEEE Transactions on Information Theory , vol.51 , pp. 3965-3973
    • Biau, G.1    Gyorfi, L.2
  • 5
    • 0002474054 scopus 로고
    • A distribution free version of the Smirnov two sample test in the p-variate case
    • Bickel P. A distribution free version of the Smirnov two sample test in the p-variate case. The Annals of Mathematical Statistics 40 (1969) 1-23
    • (1969) The Annals of Mathematical Statistics , vol.40 , pp. 1-23
    • Bickel, P.1
  • 10
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 13
    • 8644266252 scopus 로고    scopus 로고
    • Semiparametric density estimation under a two-sample density ratio model
    • Cheng K.F., and Chu C.K. Semiparametric density estimation under a two-sample density ratio model. Bernoulli 10 (2004) 583-604
    • (2004) Bernoulli , vol.10 , pp. 583-604
    • Cheng, K.F.1    Chu, C.K.2
  • 17
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 (1936) 179-188
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 19
    • 0000673504 scopus 로고
    • Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests
    • Friedman J., and Rafsky L. Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. The Annals of Statistics 7 (1979) 697-717
    • (1979) The Annals of Statistics , vol.7 , pp. 697-717
    • Friedman, J.1    Rafsky, L.2
  • 20
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Fukumizu K., Bach F.R., and Jordan M.I. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research 5 (2004) 73-99
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 26
    • 70549113878 scopus 로고    scopus 로고
    • Adaptive importance sampling for value function approximation in off-policy reinforcement learning
    • in press doi:10.1016/j.neunet.2009.01.002
    • Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J. (2009). Adaptive importance sampling for value function approximation in off-policy reinforcement learning. Neural Networks, in press (doi:10.1016/j.neunet.2009.01.002)
    • (2009) Neural Networks
    • Hachiya, H.1    Akiyama, T.2    Sugiyama, M.3    Peters, J.4
  • 27
    • 22944460361 scopus 로고    scopus 로고
    • Permutation tests for equality of distributions in highdimensional settings
    • Hall P., and Tajvidi N. Permutation tests for equality of distributions in highdimensional settings. Biometrika 89 (2002) 359-374
    • (2002) Biometrika , vol.89 , pp. 359-374
    • Hall, P.1    Tajvidi, N.2
  • 35
    • 84864031047 scopus 로고    scopus 로고
    • Correcting sample selection bias by unlabeled data
    • Schölkopf B., Platt J., and Hoffman T. (Eds), MIT Press, Cambridge, MA
    • Huang J., Smola A., Gretton A., Borgwardt K.M., and Schölkopf B. Correcting sample selection bias by unlabeled data. In: Schölkopf B., Platt J., and Hoffman T. (Eds). Advances in neural information processing systems 19 (2007), MIT Press, Cambridge, MA 601-608
    • (2007) Advances in neural information processing systems , vol.19 , pp. 601-608
    • Huang, J.1    Smola, A.2    Gretton, A.3    Borgwardt, K.M.4    Schölkopf, B.5
  • 36
    • 22944483445 scopus 로고    scopus 로고
    • Edgeworth approximation of multivariate differential entropy
    • Hulle M.M.V. Edgeworth approximation of multivariate differential entropy. Neural Computation 17 (2005) 1903-1910
    • (2005) Neural Computation , vol.17 , pp. 1903-1910
    • Hulle, M.M.V.1
  • 39
    • 70649110260 scopus 로고    scopus 로고
    • A least-squares approach to direct importance estimation
    • Technical report TR08-0003. Department of Computer Science, Tokyo Institute of Technology
    • Kanamori, T., Hido, S., & Sugiyama, M. (2008). A least-squares approach to direct importance estimation. Technical report TR08-0003. Department of Computer Science, Tokyo Institute of Technology
    • (2008)
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 40
    • 67049174125 scopus 로고    scopus 로고
    • Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection
    • MIT Press, Cambridge, MA
    • Kanamori T., Hido S., and Sugiyama M. Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection. Advances in neural information processing systems Vol. 21 (2009), MIT Press, Cambridge, MA 809-816
    • (2009) Advances in neural information processing systems , vol.21 , pp. 809-816
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 41
    • 0038647337 scopus 로고    scopus 로고
    • Active learning algorithm using the maximum weighted log-likelihood estimator
    • Kanamori T., and Shimodaira H. Active learning algorithm using the maximum weighted log-likelihood estimator. Journal of Statistical Planning and Inference 116 (2003) 149-162
    • (2003) Journal of Statistical Planning and Inference , vol.116 , pp. 149-162
    • Kanamori, T.1    Shimodaira, H.2
  • 42
    • 70649104230 scopus 로고    scopus 로고
    • Condition number analysis of kernel-based density ratio estimation
    • Technical report TR09-0006. Department of Computer Science, Tokyo Institute of Technology
    • Kanamori, T., Suzuki, T., & Sugiyama, M. (2009b). Condition number analysis of kernel-based density ratio estimation. Technical report TR09-0006. Department of Computer Science, Tokyo Institute of Technology
    • (2009)
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 48
    • 21244446518 scopus 로고    scopus 로고
    • A comparison of numerical optimizers for logistic regression
    • Technical report. Microsoft Research
    • Minka, T. P. (2007). A comparison of numerical optimizers for logistic regression. Technical report. Microsoft Research
    • (2007)
    • Minka, T.P.1
  • 49
    • 85161959021 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization
    • Platt J.C., Koller D., Singer Y., and Roweis S. (Eds), MIT Press, Cambridge, MA
    • Nguyen X., Wainwright M., and Jordan M. Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization. In: Platt J.C., Koller D., Singer Y., and Roweis S. (Eds). Advances in neural information processing systems Vol. 20 (2008), MIT Press, Cambridge, MA 1089-1096
    • (2008) Advances in neural information processing systems , vol.20 , pp. 1089-1096
    • Nguyen, X.1    Wainwright, M.2    Jordan, M.3
  • 50
    • 0042600863 scopus 로고    scopus 로고
    • Inferences for case-control and semiparametric two-sample density ratio models
    • Qin J. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika 85 (1998) 619-639
    • (1998) Biometrika , vol.85 , pp. 619-639
    • Qin, J.1
  • 51
    • 67149129014 scopus 로고    scopus 로고
    • Quiñonero-Candela J., Sugiyama M., Schwaighofer A., and Lawrence N. (Eds), MIT Press, Cambridge, MA
    • In: Quiñonero-Candela J., Sugiyama M., Schwaighofer A., and Lawrence N. (Eds). Dataset shift in machine learning (2009), MIT Press, Cambridge, MA
    • (2009) Dataset shift in machine learning
  • 54
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference 90 (2000) 227-244
    • (2000) Journal of Statistical Planning and Inference , vol.90 , pp. 227-244
    • Shimodaira, H.1
  • 55
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Steinwart I. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research 2 (2001) 67-93
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 57
    • 30744458353 scopus 로고    scopus 로고
    • Active learning in approximately linear regression based on conditional expectation of generalization error
    • Sugiyama M. Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research 7 (2006) 141-166
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 141-166
    • Sugiyama, M.1
  • 58
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research 8 (2007) 1027-1061
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 60
    • 34249027984 scopus 로고    scopus 로고
    • Input-dependent estimation of generalization error under covariate shift
    • Sugiyama M., and Müller K.-R. Input-dependent estimation of generalization error under covariate shift. Statistics & Decisions 23 (2005) 249-279
    • (2005) Statistics & Decisions , vol.23 , pp. 249-279
    • Sugiyama, M.1    Müller, K.-R.2
  • 61
    • 67349146515 scopus 로고    scopus 로고
    • Pool-based active learning in approximate linear regression
    • Sugiyama M., and Nakajima S. Pool-based active learning in approximate linear regression. Machine Learning 75 (2009) 249-274
    • (2009) Machine Learning , vol.75 , pp. 249-274
    • Sugiyama, M.1    Nakajima, S.2
  • 63
    • 70549097452 scopus 로고    scopus 로고
    • Least-squares conditional density estimation
    • Technical report TR09-0004. Department of Computer Science, Tokyo Institute of Technology
    • Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T., & Hachiya, H. (2009). Least-squares conditional density estimation. Technical report TR09-0004. Department of Computer Science, Tokyo Institute of Technology.
    • (2009)
    • Sugiyama, M.1    Takeuchi, I.2    Suzuki, T.3    Kanamori, T.4    Hachiya, H.5
  • 64
    • 67149119010 scopus 로고    scopus 로고
    • Estimating squared-loss mutual information for independent component analysis
    • Springer, Berlin
    • Suzuki T., and Sugiyama M. Estimating squared-loss mutual information for independent component analysis. Independent component analysis and signal separation (2009), Springer, Berlin 130-137
    • (2009) Independent component analysis and signal separation , pp. 130-137
    • Suzuki, T.1    Sugiyama, M.2
  • 65
    • 70649091474 scopus 로고    scopus 로고
    • Sufficient dimension reduction via squared-loss mutual information estimation. Technical report TR09-0005. Department of Computer Science, Tokyo Institute of Technology
    • Suzuki, T., & Sugiyama, M. (2009b). Sufficient dimension reduction via squared-loss mutual information estimation. Technical report TR09-0005. Department of Computer Science, Tokyo Institute of Technology
    • (2009)
    • Suzuki, T.1    Sugiyama, M.2
  • 66
    • 60849121715 scopus 로고    scopus 로고
    • Mutual information estimation reveals global associations between stimuli and biological processes
    • Suzuki T., Sugiyama M., Kanamori T., and Sese J. Mutual information estimation reveals global associations between stimuli and biological processes. BMC Bioinformatics 10 (2009) S52
    • (2009) BMC Bioinformatics , vol.10
    • Suzuki, T.1    Sugiyama, M.2    Kanamori, T.3    Sese, J.4
  • 68
    • 67650329813 scopus 로고    scopus 로고
    • Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression
    • Takeuchi I., Nomura K., and Kanamori T. Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression. Neural Computation 21 (2009) 533-559
    • (2009) Neural Computation , vol.21 , pp. 533-559
    • Takeuchi, I.1    Nomura, K.2    Kanamori, T.3
  • 71
    • 0012035667 scopus 로고    scopus 로고
    • Robust weights and designs for biased regression models: Least squares and generalized M-estimation
    • Wiens D.P. Robust weights and designs for biased regression models: Least squares and generalized M-estimation. Journal of Statistical Planning and Inference 83 (2000) 395-412
    • (2000) Journal of Statistical Planning and Inference , vol.83 , pp. 395-412
    • Wiens, D.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.