메뉴 건너뛰기




Volumn 24, Issue 2, 2011, Pages 183-198

Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search

Author keywords

Density ratio estimation; Dimensionality reduction; Unconstrained least squares importance fitting

Indexed keywords

DATA HANDLING; PROBABILITY DENSITY FUNCTION;

EID: 79251612332     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2010.10.005     Document Type: Article
Times cited : (36)

References (78)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • AC-
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, AC-19:716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 77952291679 scopus 로고    scopus 로고
    • Efficient exploration through active learning for value function approximation in reinforcement learning
    • Akiyama T., Hachiya H., Sugiyama M. Efficient exploration through active learning for value function approximation in reinforcement learning. Neural Networks 2010, 23:639-648.
    • (2010) Neural Networks , vol.23 , pp. 639-648
    • Akiyama, T.1    Hachiya, H.2    Sugiyama, M.3
  • 3
    • 0001199215 scopus 로고
    • A general class of coefficients of divergence of one distribution from another
    • Ali S.M., Silvey S.D. A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society, Series B 1966, 28:131-142.
    • (1966) Journal of the Royal Statistical Society, Series B , vol.28 , pp. 131-142
    • Ali, S.M.1    Silvey, S.D.2
  • 4
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari S. Natural gradient works efficiently in learning. Neural Computation 1998, 10:251-276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 6
    • 79251604544 scopus 로고    scopus 로고
    • UCI machine learning repository.
    • Asuncion, A., & Newman, D. (2007). UCI machine learning repository.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 7
    • 34547731827 scopus 로고    scopus 로고
    • Optimal asymptotic quadratic error of kernel estimators of Radon-Nikodym derivatives for strong mixing data
    • Bensaid N., Fabre J.P. Optimal asymptotic quadratic error of kernel estimators of Radon-Nikodym derivatives for strong mixing data. Journal of Nonparametric Statistics 2007, 19:77-88.
    • (2007) Journal of Nonparametric Statistics , vol.19 , pp. 77-88
    • Bensaid, N.1    Fabre, J.P.2
  • 8
    • 56449090551 scopus 로고    scopus 로고
    • Multi-task learning for HIV therapy screening. In Proceedings of 25th annual international conference on machine learning. ICML2008
    • Bickel, S., Bogojeska, J., Lengauer, T., & Scheffer, T. (2008). Multi-task learning for HIV therapy screening. In Proceedings of 25th annual international conference on machine learning. ICML2008 (pp. 56-63).
    • (2008) , pp. 56-63
    • Bickel, S.1    Bogojeska, J.2    Lengauer, T.3    Scheffer, T.4
  • 9
    • 34547994328 scopus 로고    scopus 로고
    • Discriminative learning for differing training and test distributions. In Proceedings of the 24th international conference on machine learning. ICML2007
    • Bickel, S., Brückner, M., & Scheffer, T. (2007). Discriminative learning for differing training and test distributions. In Proceedings of the 24th international conference on machine learning. ICML2007 (pp. 81-88).
    • (2007) , pp. 81-88
    • Bickel, S.1    Brückner, M.2    Scheffer, T.3
  • 12
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30:1145-1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 13
    • 70349609137 scopus 로고    scopus 로고
    • On kernel estimators of density ratio
    • Chen S.-M., Hsu Y.-S., Liaw J.-T. On kernel estimators of density ratio. Statistics 2009, 43:463-479.
    • (2009) Statistics , vol.43 , pp. 463-479
    • Chen, S.-M.1    Hsu, Y.-S.2    Liaw, J.-T.3
  • 14
    • 8644266252 scopus 로고    scopus 로고
    • Semiparametric density estimation under a two-sample density ratio model
    • Cheng K.F., Chu C.K. Semiparametric density estimation under a two-sample density ratio model. Bernoulli 2004, 10:583-604.
    • (2004) Bernoulli , vol.10 , pp. 583-604
    • Cheng, K.F.1    Chu, C.K.2
  • 16
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observation
    • Csiszár I. Information-type measures of difference of probability distributions and indirect observation. Studia Scientiarum Mathematicarum Hungarica 1967, 2:229-318.
    • (1967) Studia Scientiarum Mathematicarum Hungarica , vol.2 , pp. 229-318
    • Csiszár, I.1
  • 19
    • 0040791373 scopus 로고
    • Asymptotic properties of kernel estimators of the Radon-Nikodym derivative with applications to discriminant analysis
    • Gijbels I., Mielniczuk J. Asymptotic properties of kernel estimators of the Radon-Nikodym derivative with applications to discriminant analysis. Statistica Sinica 1995, 5:261-278.
    • (1995) Statistica Sinica , vol.5 , pp. 261-278
    • Gijbels, I.1    Mielniczuk, J.2
  • 20
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore, MD, USA
    • Golub G.H., Loan C.F.V. Matrix computations 1996, Johns Hopkins University Press, Baltimore, MD, USA.
    • (1996) Matrix computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 21
    • 70549113878 scopus 로고    scopus 로고
    • Adaptive importance sampling for value function approximation in off-policy reinforcement learning
    • Hachiya H., Akiyama T., Sugiyama M., Peters J. Adaptive importance sampling for value function approximation in off-policy reinforcement learning. Neural Networks 2009, 22:1399-1410.
    • (2009) Neural Networks , vol.22 , pp. 1399-1410
    • Hachiya, H.1    Akiyama, T.2    Sugiyama, M.3    Peters, J.4
  • 24
    • 0004245065 scopus 로고
    • SAGE Publication, Beverly Hills, CA, USA
    • Henkel R.E. Tests of significance 1979, SAGE Publication, Beverly Hills, CA, USA.
    • (1979) Tests of significance
    • Henkel, R.E.1
  • 25
    • 67049098640 scopus 로고    scopus 로고
    • Inlier-based outlier detection via direct density ratio estimation. In Proceedings of IEEE international conference on data mining. ICDM2008
    • Hido, S., Tsuboi, Y., Kashima, H., Sugiyama, M., & Kanamori, T. (2008). Inlier-based outlier detection via direct density ratio estimation. In Proceedings of IEEE international conference on data mining. ICDM2008 (pp. 223-232).
    • (2008) , pp. 223-232
    • Hido, S.1    Tsuboi, Y.2    Kashima, H.3    Sugiyama, M.4    Kanamori, T.5
  • 26
    • 79251632033 scopus 로고    scopus 로고
    • Statistical outlier detection using direct density ratio estimation. Knowledge and Information Systems (in press).
    • Hido, S., Tsuboi, Y., Kashima, H., Sugiyama, M., & Kanamori, T. (2010). Statistical outlier detection using direct density ratio estimation. Knowledge and Information Systems (in press).
    • (2010)
    • Hido, S.1    Tsuboi, Y.2    Kashima, H.3    Sugiyama, M.4    Kanamori, T.5
  • 28
    • 22944483445 scopus 로고    scopus 로고
    • Edgeworth approximation of multivariate differential entropy
    • Hulle M.M.V. Edgeworth approximation of multivariate differential entropy. Neural Computation 2005, 17:1903-1910.
    • (2005) Neural Computation , vol.17 , pp. 1903-1910
    • Hulle, M.M.V.1
  • 29
    • 0346083990 scopus 로고    scopus 로고
    • Kernel estimators of general Radon-Nikodym derivatives
    • Jacob P., Oliveira P.E. Kernel estimators of general Radon-Nikodym derivatives. Statistics 1997, 30:25-46.
    • (1997) Statistics , vol.30 , pp. 25-46
    • Jacob, P.1    Oliveira, P.E.2
  • 30
    • 0038647337 scopus 로고    scopus 로고
    • Active learning algorithm using the maximum weighted log-likelihood estimator
    • Kanamori T., Shimodaira H. Active learning algorithm using the maximum weighted log-likelihood estimator. Journal of Statistical Planning and Inference 2003, 116:149-162.
    • (2003) Journal of Statistical Planning and Inference , vol.116 , pp. 149-162
    • Kanamori, T.1    Shimodaira, H.2
  • 32
    • 79251629130 scopus 로고    scopus 로고
    • Condition number analysis of kernel-based density ratio estimation. Technical report. arXiv.
    • Kanamori, T., Suzuki, T., & Sugiyama, M. (2009). Condition number analysis of kernel-based density ratio estimation. Technical report. arXiv.
    • (2009)
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 33
    • 72849146898 scopus 로고    scopus 로고
    • Change-point detection in time-series data by direct density-ratio estimation. In Proceedings of 2009 SIAM international conference on data mining. SDM2009
    • Kawahara, Y., & Sugiyama, M. (2009). Change-point detection in time-series data by direct density-ratio estimation. In Proceedings of 2009 SIAM international conference on data mining. SDM2009 (pp. 389-400).
    • (2009) , pp. 389-400
    • Kawahara, Y.1    Sugiyama, M.2
  • 36
    • 77958588617 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory (in press).
    • Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory (in press).
    • (2010)
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 37
    • 21744442796 scopus 로고    scopus 로고
    • Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold
    • Nishimori Y., Akaho S. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 2005, 67:106-135.
    • (2005) Neurocomputing , vol.67 , pp. 106-135
    • Nishimori, Y.1    Akaho, S.2
  • 39
    • 79251617808 scopus 로고    scopus 로고
    • The matrix cookbook. Technical report. Technical University of Denmark.
    • Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. Technical report. Technical University of Denmark.
    • (2008)
    • Petersen, K.B.1    Pedersen, M.S.2
  • 40
    • 21744446767 scopus 로고    scopus 로고
    • Geometrical methods for non-negative ICA: manifolds, Lie groups and toral subalgebras
    • Plumbley M.D. Geometrical methods for non-negative ICA: manifolds, Lie groups and toral subalgebras. Neurocomputing 2005, 67:161-197.
    • (2005) Neurocomputing , vol.67 , pp. 161-197
    • Plumbley, M.D.1
  • 42
    • 0042600863 scopus 로고    scopus 로고
    • Inferences for case-control and semiparametric two-sample density ratio models
    • Qin J. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika 1998, 85:619-639.
    • (1998) Biometrika , vol.85 , pp. 619-639
    • Qin, J.1
  • 43
    • 67149129014 scopus 로고    scopus 로고
    • MIT Press, Cambridge, Massachusetts, USA, J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, N. Lawrence (Eds.)
    • Dataset shift in machine learning 2009, MIT Press, Cambridge, Massachusetts, USA. J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, N. Lawrence (Eds.).
    • (2009) Dataset shift in machine learning
  • 44
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference 2000, 90:227-244.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , pp. 227-244
    • Shimodaira, H.1
  • 47
    • 84855817673 scopus 로고    scopus 로고
    • Relative novelty detection. In Proceedings of twelfth international conference on artificial intelligence and statistics. AISTATS2009. Clearwater Beach, FL, USA
    • Smola, A., Song, L., & Teo, C. H. (2009). Relative novelty detection. In Proceedings of twelfth international conference on artificial intelligence and statistics. AISTATS2009. Clearwater Beach, FL, USA (pp. 536-543).
    • (2009) , pp. 536-543
    • Smola, A.1    Song, L.2    Teo, C.H.3
  • 48
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Steinwart I. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research 2001, 2:67-93.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 49
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B 1974, 36:111-147.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 111-147
    • Stone, M.1
  • 50
    • 34249051141 scopus 로고    scopus 로고
    • Mixture regression for covariate shift
    • MIT Press, Cambridge, Massachusetts, USA
    • Storkey A., Sugiyama M. Mixture regression for covariate shift. Advances in neural information processing systems 2007, vol. 19:1337-1344. MIT Press, Cambridge, Massachusetts, USA.
    • (2007) Advances in neural information processing systems , vol.19 , pp. 1337-1344
    • Storkey, A.1    Sugiyama, M.2
  • 51
    • 30744458353 scopus 로고    scopus 로고
    • Active learning in approximately linear regression based on conditional expectation of generalization error
    • Sugiyama M. Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research 2006, 7:141-166.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 141-166
    • Sugiyama, M.1
  • 52
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research 2007, 8:1027-1061.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 53
    • 77957851853 scopus 로고    scopus 로고
    • Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting
    • E, -D
    • Sugiyama M. Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting. IEICE Transactions on Information and Systems 2010, E93-D:2690-2701.
    • (2010) IEICE Transactions on Information and Systems , vol.93 , pp. 2690-2701
    • Sugiyama, M.1
  • 55
    • 79251641543 scopus 로고    scopus 로고
    • Covariate shift adaptation: towards machine learning in non-stationary environment. Cambridge, MA, USA. MIT Press (in press).
    • Sugiyama, M., & Kawanabe, M. (2010). Covariate shift adaptation: towards machine learning in non-stationary environment. Cambridge, MA, USA. MIT Press (in press).
    • (2010)
    • Sugiyama, M.1    Kawanabe, M.2
  • 56
    • 70649085072 scopus 로고    scopus 로고
    • Dimensionality reduction for density ratio estimation in high-dimensional spaces
    • Sugiyama M., Kawanabe M., Chui P.L. Dimensionality reduction for density ratio estimation in high-dimensional spaces. Neural Networks 2010, 23:44-59.
    • (2010) Neural Networks , vol.23 , pp. 44-59
    • Sugiyama, M.1    Kawanabe, M.2    Chui, P.L.3
  • 58
    • 34249027984 scopus 로고    scopus 로고
    • Input-dependent estimation of generalization error under covariate shift
    • Sugiyama M., Müller K.-R. Input-dependent estimation of generalization error under covariate shift. Statistics & Decisions 2005, 23:249-279.
    • (2005) Statistics & Decisions , vol.23 , pp. 249-279
    • Sugiyama, M.1    Müller, K.-R.2
  • 59
    • 67349146515 scopus 로고    scopus 로고
    • Pool-based active learning in approximate linear regression
    • Sugiyama M., Nakajima S. Pool-based active learning in approximate linear regression. Machine Learning 2009, 75:249-274.
    • (2009) Machine Learning , vol.75 , pp. 249-274
    • Sugiyama, M.1    Nakajima, S.2
  • 60
    • 79251621795 scopus 로고    scopus 로고
    • Density ratio estimation: a comprehensive review
    • Sugiyama M., Suzuki T., Kanamori T. Density ratio estimation: a comprehensive review. RIMS Kokyuroku 2010, 10-31.
    • (2010) RIMS Kokyuroku , pp. 10-31
    • Sugiyama, M.1    Suzuki, T.2    Kanamori, T.3
  • 64
    • 0031486567 scopus 로고    scopus 로고
    • Semi-parametric estimates under biased sampling
    • Sun J., Woodroofe M. Semi-parametric estimates under biased sampling. Statistica Sinica 1997, 7:545-575.
    • (1997) Statistica Sinica , vol.7 , pp. 545-575
    • Sun, J.1    Woodroofe, M.2
  • 65
    • 67149119010 scopus 로고    scopus 로고
    • Estimating squared-loss mutual information for independent component analysis
    • Springer, Berlin, Germany
    • Suzuki T., Sugiyama M. Estimating squared-loss mutual information for independent component analysis. Independent component analysis and signal separation 2009, 130-137. Springer, Berlin, Germany.
    • (2009) Independent component analysis and signal separation , pp. 130-137
    • Suzuki, T.1    Sugiyama, M.2
  • 66
    • 84862297410 scopus 로고    scopus 로고
    • Sufficient dimension reduction via squared-loss mutual information estimation. In Proceedings of the thirteenth international conference on artificial intelligence and statistics. AISTATS2010
    • Suzuki, T., & Sugiyama, M. (2010). Sufficient dimension reduction via squared-loss mutual information estimation. In Proceedings of the thirteenth international conference on artificial intelligence and statistics. AISTATS2010 (pp. 804-811).
    • (2010) , pp. 804-811
    • Suzuki, T.1    Sugiyama, M.2
  • 67
    • 60849121715 scopus 로고    scopus 로고
    • Mutual information estimation reveals global associations between stimuli and biological processes
    • Suzuki T., Sugiyama M., Kanamori T., Sese J. Mutual information estimation reveals global associations between stimuli and biological processes. BMC Bioinformatics 2009, 10:S52.
    • (2009) BMC Bioinformatics , vol.10
    • Suzuki, T.1    Sugiyama, M.2    Kanamori, T.3    Sese, J.4
  • 68
    • 67149113981 scopus 로고    scopus 로고
    • Approximating mutual information by maximum likelihood density ratio estimation. In Proceedings of ECML-PKDD2008 workshop on new challenges for feature selection in data mining and knowledge discovery 2008. FSDM2008
    • Suzuki, T., Sugiyama, M., Sese, J., & Kanamori, T. (2008). Approximating mutual information by maximum likelihood density ratio estimation. In Proceedings of ECML-PKDD2008 workshop on new challenges for feature selection in data mining and knowledge discovery 2008. FSDM2008 (pp. 5-20).
    • (2008) , pp. 5-20
    • Suzuki, T.1    Sugiyama, M.2    Sese, J.3    Kanamori, T.4
  • 69
    • 70449490877 scopus 로고    scopus 로고
    • Mutual information approximation via maximum likelihood estimation of density ratio. In Proceedings of 2009 IEEE international symposium on information theory. ISIT2009
    • Suzuki, T., Sugiyama, M., & Tanaka, T. (2009). Mutual information approximation via maximum likelihood estimation of density ratio. In Proceedings of 2009 IEEE international symposium on information theory. ISIT2009 (pp. 463-467).
    • (2009) , pp. 463-467
    • Suzuki, T.1    Sugiyama, M.2    Tanaka, T.3
  • 70
    • 67650329813 scopus 로고    scopus 로고
    • Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression
    • Takeuchi I., Nomura K., Kanamori T. Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression. Neural Computation 2009, 21:533-559.
    • (2009) Neural Computation , vol.21 , pp. 533-559
    • Takeuchi, I.1    Nomura, K.2    Kanamori, T.3
  • 72
    • 78149480678 scopus 로고    scopus 로고
    • Perceived age estimation under lighting condition change by covariate shift adaptation. In 20th international conference on pattern recognition. ICPR2010
    • Ueki, K., Sugiyama, M., & Ihara, Y. (2010). Perceived age estimation under lighting condition change by covariate shift adaptation. In 20th international conference on pattern recognition. ICPR2010 (pp. 3400-3403).
    • (2010) , pp. 3400-3403
    • Ueki, K.1    Sugiyama, M.2    Ihara, Y.3
  • 74
    • 0003466536 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
    • Wahba G. Spline models for observational data 1990, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
    • (1990) Spline models for observational data
    • Wahba, G.1
  • 75
    • 0012035667 scopus 로고    scopus 로고
    • Robust weights and designs for biased regression models: least squares and generalized M-estimation
    • Wiens D.P. Robust weights and designs for biased regression models: least squares and generalized M-estimation. Journal of Statistical Planning and Inference 2000, 83:395-412.
    • (2000) Journal of Statistical Planning and Inference , vol.83 , pp. 395-412
    • Wiens, D.P.1
  • 76
    • 77958598373 scopus 로고    scopus 로고
    • Dependence minimizing regression with model selection for non-linear causal inference under non-Gaussian noise
    • The AAAI Press, Atlanta, Georgia, USA
    • Yamada M., Sugiyama M. Dependence minimizing regression with model selection for non-linear causal inference under non-Gaussian noise. Proceedings of the twenty-fourth AAAI conference on artificial intelligence 2010, 643-648. The AAAI Press, Atlanta, Georgia, USA.
    • (2010) Proceedings of the twenty-fourth AAAI conference on artificial intelligence , pp. 643-648
    • Yamada, M.1    Sugiyama, M.2
  • 77
    • 77951203581 scopus 로고    scopus 로고
    • Semi-supervised speaker identification under covariate shift
    • Yamada M., Sugiyama M., Matsui T. Semi-supervised speaker identification under covariate shift. Signal Processing 2010, 90:2353-2361.
    • (2010) Signal Processing , vol.90 , pp. 2353-2361
    • Yamada, M.1    Sugiyama, M.2    Matsui, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.