-
1
-
-
0025817650
-
Blood pressure control - Special role of the kidneys and body fluids
-
Guyton AC. Blood pressure control-special role of the kidneys and body fluids. Science. 1991;252:1813-6. (Pubitemid 21917099)
-
(1991)
Science
, vol.252
, Issue.5014
, pp. 1813-1816
-
-
Guyton, A.C.1
-
2
-
-
84859872350
-
Recent advances involving the renin-angiotensin system
-
22410251 10.1016/j.yexcr.2012.02.023 1:CAS:528:DC%2BC38XltVKgt7k%3D
-
Crowley SD, Coffman TM. Recent advances involving the renin-angiotensin system. Exp Cell Res. 2012;318:1049-56.
-
(2012)
Exp Cell Res
, vol.318
, pp. 1049-1056
-
-
Crowley, S.D.1
Coffman, T.M.2
-
3
-
-
78650491846
-
Paleolithic nutrition: Twenty-five years later
-
21139123 10.1177/0884533610385702
-
Konner M, Eaton SB. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract. 2010;25:594-602.
-
(2010)
Nutr Clin Pract
, vol.25
, pp. 594-602
-
-
Konner, M.1
Eaton, S.B.2
-
4
-
-
0021965878
-
Paleolithic nutrition. A consideration of its nature and current implications
-
Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med. 1985;312:283-9. (Pubitemid 15199367)
-
(1985)
New England Journal of Medicine
, vol.312
, Issue.5
, pp. 283-289
-
-
Eaton, S.B.1
Konner, M.2
-
5
-
-
84855291158
-
Role of the kidneys in resistant hypertension
-
Khawaja Z, Wilcox CS. Role of the kidneys in resistant hypertension. Int J Hypertens. 2011;2011:143471.
-
(2011)
Int J Hypertens
, vol.2011
, pp. 143471
-
-
Khawaja, Z.1
Wilcox, C.S.2
-
6
-
-
15544364940
-
Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases
-
DOI 10.1152/physrev.00056.2003
-
Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev. 2005;85:679-715. (Pubitemid 40404639)
-
(2005)
Physiological Reviews
, vol.85
, Issue.2
, pp. 679-715
-
-
Meneton, P.1
Jeunemaitre, X.2
De Wardener, H.E.3
Macgregor, G.A.4
-
7
-
-
84862170060
-
Regulation of Transport in the Connecting Tubule and Cortical Collecting
-
This comprehensive review manuscript provides up-to-date overview of mechanisms controlling channels and transporters in the distal part of renal nephron
-
• Staruschenko A. Regulation of Transport in the Connecting Tubule and Cortical Collecting Duct. Compr Physiol. 2012;2:1541-84. This comprehensive review manuscript provides up-to-date overview of mechanisms controlling channels and transporters in the distal part of renal nephron.
-
(2012)
Duct. Compr Physiol.
, vol.2
, pp. 1541-1584
-
-
Staruschenko, A.1
-
8
-
-
79958156560
-
Role of the epithelial sodium channel in salt-sensitive hypertension
-
21623391 10.1038/aps.2011.72 1:CAS:528:DC%2BC3MXmvFyjtbc%3D
-
Sun Y, Zhang JN, Zhao D, et al. Role of the epithelial sodium channel in salt-sensitive hypertension. Acta Pharmacol Sin. 2011;32:789-97.
-
(2011)
Acta Pharmacol Sin
, vol.32
, pp. 789-797
-
-
Sun, Y.1
Zhang, J.N.2
Zhao, D.3
-
9
-
-
77957258311
-
Role of epithelial sodium channels and their regulators in hypertension
-
20624922 10.1074/jbc.R110.155341 1:CAS:528:DC%2BC3cXht1SlsrzN
-
Soundararajan R, Pearce D, Hughey RP, Kleyman TR. Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem. 2010;285:30363-9.
-
(2010)
J Biol Chem
, vol.285
, pp. 30363-30369
-
-
Soundararajan, R.1
Pearce, D.2
Hughey, R.P.3
Kleyman, T.R.4
-
11
-
-
0030945484
-
Epithelial sodium channels: Function, structure and regulation
-
Garty H, Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev. 1997;77:359-96. (Pubitemid 27184343)
-
(1997)
Physiological Reviews
, vol.77
, Issue.2
, pp. 359-396
-
-
Garty, H.1
Palmer, L.G.2
-
12
-
-
0033051605
-
Implication of ENaC in salt-sensitive hypertension
-
DOI 10.1016/S0960-0760(99)00073-4, PII S0960076099000734
-
Hummler E. Implication of ENaC in salt-sensitive hypertension. J Steroid Biochem Mol Biol. 1999;69:385-90. (Pubitemid 29305560)
-
(1999)
Journal of Steroid Biochemistry and Molecular Biology
, vol.69
, Issue.1-6
, pp. 385-390
-
-
Hummler, E.1
-
13
-
-
0038689471
-
Epithelial sodium channel, salt intake, and hypertension
-
Hummler E. Epithelial sodium channel, salt intake, and hypertension. Curr Hypertens Rep. 2003;5:11-8. (Pubitemid 38898927)
-
(2003)
Current Hypertension Reports
, vol.5
, Issue.1
, pp. 11-18
-
-
Hummler, E.1
-
14
-
-
4644268448
-
The epithelial sodium channel: From molecule to disease
-
15146350 10.1007/s10254-004-0023-7 1:CAS:528:DC%2BD2cXotFWqtrY%3D
-
Schild L. The epithelial sodium channel: from molecule to disease. Rev Physiol Biochem Pharmacol. 2004;151:93-107.
-
(2004)
Rev Physiol Biochem Pharmacol
, vol.151
, pp. 93-107
-
-
Schild, L.1
-
16
-
-
0036083469
-
New ideas about aldosterone signaling in epithelia
-
11880316
-
Stockand JD. New ideas about aldosterone signaling in epithelia. Am J Physiol Renal Physiol. 2002;282:F559-76.
-
(2002)
Am J Physiol Renal Physiol
, vol.282
-
-
Stockand, J.D.1
-
17
-
-
0029092801
-
Hypertension caused by a truncated epithelial sodium channel gamma subunit: Genetic heterogeneity of Liddle syndrome
-
7550319 10.1038/ng0995-76 1:CAS:528:DyaK2MXnvFelsLY%3D
-
Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76-82.
-
(1995)
Nat Genet
, vol.11
, pp. 76-82
-
-
Hansson, J.H.1
Nelson-Williams, C.2
Suzuki, H.3
-
18
-
-
0029586683
-
A de novo missense mutation of the β subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity
-
DOI 10.1073/pnas.92.25.11495
-
Hansson JH, Schild L, Lu Y, et al. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A. 1995;92:11495-9. (Pubitemid 26014140)
-
(1995)
Proceedings of the National Academy of Sciences of the United States of America
, vol.92
, Issue.25
, pp. 11495-11499
-
-
Hansson, J.H.1
Schild, L.2
Lu, Y.3
Wilson, T.A.4
Gautschi, I.5
Shimkets, R.6
Nelson- Williams, C.7
Rossier, B.C.8
Lifton, R.P.9
-
19
-
-
0035936780
-
Molecular mechanisms of human hypertension
-
DOI 10.1016/S0092-8674(01)00241-0
-
Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545-56. (Pubitemid 32201949)
-
(2001)
Cell
, vol.104
, Issue.4
, pp. 545-556
-
-
Lifton, R.P.1
Gharavi, A.G.2
Geller, D.S.3
-
20
-
-
0029821077
-
The ENaC channel as the primary determinant of two human diseases: Liddle syndrome and pseudohypoaldosteronism
-
Schild L. The ENaC channel as the primary determinant of two human diseases: Liddle syndrome and pseudohypoaldosteronism. Nephrologie. 1996;17:395-400. (Pubitemid 26413079)
-
(1996)
Nephrologie
, vol.17
, Issue.7
, pp. 395-400
-
-
Schild, L.1
-
21
-
-
0027946089
-
Liddle's syndrome: Heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel
-
DOI 10.1016/0092-8674(94)90250-X
-
Shimkets RA, Warnock DG, Bositis CM, et al. Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79:407-14. (Pubitemid 24346056)
-
(1994)
Cell
, vol.79
, Issue.3
, pp. 407-414
-
-
Shimkets, R.A.1
Warnock, D.G.2
Bositis, C.M.3
Nelson-Williams, C.4
Hansson, J.H.5
Schambelan, M.6
Gill Jr., J.R.7
Ulick, S.8
Milora, R.V.9
Findling, J.W.10
Canessa, C.M.11
Rossier, B.C.12
Lifton, R.P.13
-
22
-
-
0036069215
-
Abnormal regulation of ENaC: Syndromes of salt retention and salt wasting by the collecting duct
-
12110505 1:CAS:528:DC%2BD38XmslShtL8%3D
-
Schafer JA. Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol Renal Physiol. 2002;283:F221-35.
-
(2002)
Am J Physiol Renal Physiol
, vol.283
-
-
Schafer, J.A.1
-
23
-
-
0026586125
-
Regulation of apical membrane Na and K channels in rat renal collecting tubules by aldosterone
-
1312742 1:CAS:528:DyaK38Xhs1KgsLo%3D
-
Palmer LG, Frindt G. Regulation of apical membrane Na and K channels in rat renal collecting tubules by aldosterone. Semin Nephrol. 1992;12:37-43.
-
(1992)
Semin Nephrol
, vol.12
, pp. 37-43
-
-
Palmer, L.G.1
Frindt, G.2
-
24
-
-
70350719352
-
Surface expression of sodium channels and transporters in rat kidney: Effects of dietary sodium
-
19741015 10.1152/ajprenal.00401.2009 1:CAS:528:DC%2BD1MXhsValtr3L
-
Frindt G, Palmer LG. Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am J Physiol Renal Physiol. 2009;297:F1249-55.
-
(2009)
Am J Physiol Renal Physiol
, vol.297
-
-
Frindt, G.1
Palmer, L.G.2
-
25
-
-
0028966448
-
Transcriptional control of sodium transport in tight epithelial by adrenal steroids
-
7595948 1:CAS:528:DyaK2MXkslyrs7o%3D
-
Verrey F. Transcriptional control of sodium transport in tight epithelial by adrenal steroids. J Membr Biol. 1995;144:93-110.
-
(1995)
J Membr Biol
, vol.144
, pp. 93-110
-
-
Verrey, F.1
-
26
-
-
0034203243
-
Aldosterone-related genetic effects in hypertension
-
10981163 10.1007/s11906-000-0013-3 1:STN:280:DC%2BD3cvpsV2hsA%3D%3D
-
Warnock DG. Aldosterone-related genetic effects in hypertension. Curr Hypertens Rep. 2000;2:295-301.
-
(2000)
Curr Hypertens Rep
, vol.2
, pp. 295-301
-
-
Warnock, D.G.1
-
27
-
-
33644815440
-
Kidney function in mice lacking aldosterone
-
16118390 10.1152/ajprenal.00257.2005 1:CAS:528:DC%2BD28XhsVKitL0%3D
-
Makhanova N, Lee G, Takahashi N, et al. Kidney function in mice lacking aldosterone. Am J Physiol Renal Physiol. 2006;290:F61-9.
-
(2006)
Am J Physiol Renal Physiol
, vol.290
-
-
Makhanova, N.1
Lee, G.2
Takahashi, N.3
-
28
-
-
0036690114
-
Drugs targeting the renin-angiotensin-aldosterone system
-
DOI 10.1038/nrd873
-
Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin-angiotensin- aldosterone system. Nat Rev Drug Discov. 2002;1:621-36. (Pubitemid 37368827)
-
(2002)
Nature Reviews Drug Discovery
, vol.1
, Issue.8
, pp. 621-636
-
-
Zaman, M.A.1
Oparil, S.2
Calhoun, D.A.3
-
29
-
-
79955159268
-
Aldosterone paradox: Differential regulation of ion transport in distal nephron
-
10.1152/physiol.00049.2010 1:CAS:528:DC%2BC3MXms1Gmtbg%3D
-
Arroyo JP, Ronzaud C, Lagnaz D, et al. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda). 2011;26:115-23.
-
(2011)
Physiology (Bethesda)
, vol.26
, pp. 115-123
-
-
Arroyo, J.P.1
Ronzaud, C.2
Lagnaz, D.3
-
30
-
-
13144251124
-
+ metabolism
-
DOI 10.1073/pnas.95.16.9424
-
+ metabolism. Proc Natl Acad Sci U S A. 1998;95:9424-9. (Pubitemid 28506247)
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.16
, pp. 9424-9429
-
-
Berger, S.1
Bleich, M.2
Schmid, W.3
Cole, T.J.4
Peters, J.5
Watanabe, H.6
Kriz, W.7
Warth, R.8
Greger, R.9
Schutz, G.10
-
32
-
-
33644876406
-
Central role for ENaC in development of hypertension
-
10.1681/ASN.2005050460
-
Pratt JH. Central role for ENaC in development of hypertension. J Am Soc Nephrol. 2001;16:3154-9.
-
(2001)
J Am Soc Nephrol
, vol.16
, pp. 3154-3159
-
-
Pratt, J.H.1
-
33
-
-
0028952503
-
Regulation of blood pressure by the type 1A angiotensin II receptor gene
-
7724593 10.1073/pnas.92.8.3521 1:CAS:528:DyaK2MXltFSms7k%3D
-
Ito M, Oliverio MI, Mannon PJ, et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci U S A. 1995;92:3521-5.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 3521-3525
-
-
Ito, M.1
Oliverio, M.I.2
Mannon, P.J.3
-
35
-
-
33845210475
-
Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney
-
DOI 10.1073/pnas.0605545103
-
Crowley SD, Gurley SB, Herrera MJ, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci U S A. 2006;103:17985-90. (Pubitemid 44852272)
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.47
, pp. 17985-17990
-
-
Crowley, S.D.1
Gurley, S.B.2
Herrera, M.J.3
Ruiz, P.4
Griffiths, R.5
Kumar, A.P.6
Kim, H.-S.7
Smithies, O.8
Le, T.H.9
Coffman, T.M.10
-
36
-
-
80055099871
-
1 receptor-mediated salt retention in angiotensin II-dependent hypertension
-
21849491 10.1152/ajprenal.00305.2011 1:CAS:528:DC%2BC3MXhsFakt73O
-
1 receptor-mediated salt retention in angiotensin II-dependent hypertension. Am J Physiol Renal Physiol. 2011;301:F1124-30.
-
(2011)
Am J Physiol Renal Physiol
, vol.301
-
-
Crowley, S.D.1
Zhang, J.2
Herrera, M.3
-
37
-
-
0030826607
-
Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody
-
9249605 1:CAS:528:DyaK2sXltFCqtr0%3D
-
Harrison-Bernard LM, Navar LG, Ho MM, et al. Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody. Am J Physiol. 1997;273:F170-7.
-
(1997)
Am J Physiol
, vol.273
-
-
Harrison-Bernard, L.M.1
Navar, L.G.2
Ho, M.M.3
-
38
-
-
0030722325
-
2) receptor protein in rat kidney
-
Ozono R, Wang ZQ, Moore AF, et al. Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension. 1997;30:1238-46. (Pubitemid 27476185)
-
(1997)
Hypertension
, vol.30
, Issue.5
, pp. 1238-1246
-
-
Ozono, R.1
Wang, Z.-Q.2
Moore, A.F.3
Inagami, T.4
Siragy, H.M.5
Carey, R.M.6
-
40
-
-
79953743181
-
1a angiotensin receptors in the renal proximal tubule regulate blood pressure
-
21459331 10.1016/j.cmet.2011.03.001 1:CAS:528:DC%2BC3MXktF2nsb4%3D
-
1a angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 2011;13:469-75.
-
(2011)
Cell Metab
, vol.13
, pp. 469-475
-
-
Gurley, S.B.1
Riquier-Brison, A.D.2
Schnermann, J.3
-
42
-
-
82655173697
-
AT1 receptors in the collecting duct directly modulate the concentration of urine
-
1a in the principal cells impairs urinary concentrating ability
-
1a in the principal cells impairs urinary concentrating ability.
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 2237-2246
-
-
Stegbauer, J.1
Gurley, S.B.2
Sparks, M.A.3
-
43
-
-
33745582899
-
Angiotensin II: Multitasking in the brain
-
DOI 10.1097/01.hjh.0000220418.09021.ee, PII 0000487220060300100020
-
Saavedra JM, Benicky J, Zhou J. Angiotensin II: multitasking in the brain. J Hypertens Suppl. 2006;24:S131-7. (Pubitemid 44336834)
-
(2006)
Journal of Hypertension
, vol.24
, Issue.SUPPL. 1
-
-
Saavedra, J.M.1
Benicky, J.2
Zhou, J.3
-
44
-
-
33947526470
-
The physiology of a local renin-angiotensin system in the pancreas
-
DOI 10.1113/jphysiol.2006.126193
-
Leung PS. The physiology of a local renin-angiotensin system in the pancreas. J Physiol. 2007;580:31-7. (Pubitemid 46470642)
-
(2007)
Journal of Physiology
, vol.580
, Issue.1
, pp. 31-37
-
-
Leung, P.S.1
-
45
-
-
70350707754
-
+ channel in the collecting duct by vasopressin contributes to water reabsorption
-
19692483 10.1152/ajprenal.00371.2009 1:CAS:528:DC%2BD1MXhsValtrvI
-
+ channel in the collecting duct by vasopressin contributes to water reabsorption. Am J Physiol Renal Physiol. 2009;297:F1411-8.
-
(2009)
Am J Physiol Renal Physiol
, vol.297
-
-
Bugaj, V.1
Pochynyuk, O.2
Stockand, J.D.3
-
47
-
-
84855282420
-
+ Channel (ENaC) in Distal Nephron Additively to Aldosterone
-
Using physiologically relevant tissue: split-opened distal nephrons of mice, this study demonstrates that Ang II directly controls ENaC activity. This regulation is complex and includes an acute activation of functional ENaC via generation of ROS as well as more chronic effect on ENaC trafficking to the apical plasma membrane. Furthermore, the effect of Ang II on ENaC is independent of aldosterone status
-
+ Channel (ENaC) in Distal Nephron Additively to Aldosterone. J Biol Chem. 2012;287:660-71. Using physiologically relevant tissue: split-opened distal nephrons of mice, this study demonstrates that Ang II directly controls ENaC activity. This regulation is complex and includes an acute activation of functional ENaC via generation of ROS as well as more chronic effect on ENaC trafficking to the apical plasma membrane. Furthermore, the effect of Ang II on ENaC is independent of aldosterone status.
-
(2012)
J Biol Chem.
, vol.287
, pp. 660-671
-
-
Mamenko, M.1
Zaika, O.2
Ilatovskaya, D.V.3
-
49
-
-
84863238020
-
Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney
-
2+ -independent PKC pathway, activation of NOX and superoxide generation
-
2+ -independent PKC pathway, activation of NOX and superoxide generation.
-
(2012)
Am J Physiol Renal Physiol
, vol.302
-
-
Sun, P.1
Yue, P.2
Wang, W.H.3
-
50
-
-
29344452247
-
1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II
-
1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20:953-70.
-
(2006)
Mol Endocrinol
, vol.20
, pp. 953-970
-
-
Hunyady, L.1
Catt, K.J.2
-
51
-
-
0037527730
-
Angiotensin AT1/AT2 receptors: Regulation, signalling and function
-
DOI 10.1080/08037050310001057
-
2 receptors: regulation, signalling and function. Blood Press. 2003;12:70-88. (Pubitemid 36700689)
-
(2003)
Blood Pressure
, vol.12
, Issue.2
, pp. 70-88
-
-
Kaschina, E.1
Unger, T.2
-
52
-
-
34447292381
-
phox-containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion
-
DOI 10.1681/ASN.2006121333
-
Babilonia E, Lin D, Zhang Y, et al. Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion. J Am Soc Nephrol. 2007;18:2037-45. (Pubitemid 47041069)
-
(2007)
Journal of the American Society of Nephrology
, vol.18
, Issue.7
, pp. 2037-2045
-
-
Babilonia, E.1
Lin, D.2
Zhang, Y.3
Wei, Y.4
Yue, P.5
Wang, W.-H.6
-
53
-
-
77957860942
-
High potassium intake enhances the inhibitory effect of 11,12-EET on ENaC
-
20595684 10.1681/ASN.2009111110 1:CAS:528:DC%2BC3cXhtlems7%2FF
-
Sun P, Lin DH, Yue P, et al. High potassium intake enhances the inhibitory effect of 11,12-EET on ENaC. J Am Soc Nephrol. 2010;21:1667-77.
-
(2010)
J Am Soc Nephrol
, vol.21
, pp. 1667-1677
-
-
Sun, P.1
Lin, D.H.2
Yue, P.3
-
54
-
-
10344261424
-
Arachidonic acid inhibits epithelial Na channel via cytochrome P450 (CYP) epoxygenase-dependent metabolic pathways
-
DOI 10.1085/jgp.200409140
-
Wei Y, Lin DH, Kemp R, et al. Arachidonic acid inhibits epithelial Na channel via cytochrome P450 (CYP) epoxygenase-dependent metabolic pathways. J Gen Physiol. 2004;124:719-27. (Pubitemid 39628138)
-
(2004)
Journal of General Physiology
, vol.124
, Issue.6
, pp. 719-727
-
-
Wei, Y.1
Lin, D.-H.2
Kemp, R.3
Yaddanapudi, G.S.S.4
Nasjletti, A.5
Falck, J.R.6
Wang, W.-H.7
-
55
-
-
80052410373
-
Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC)
-
21697242 10.1152/ajprenal.00597.2010 1:CAS:528:DC%2BC3MXht1Sku7%2FE
-
Pavlov TS, Ilatovskaya DV, Levchenko V, et al. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol. 2011;301:F672-81.
-
(2011)
Am J Physiol Renal Physiol
, vol.301
-
-
Pavlov, T.S.1
Ilatovskaya, D.V.2
Levchenko, V.3
-
56
-
-
80052780146
-
Hydrogen peroxide stimulates the epithelial sodium channel through a phosphatidylinositide 3-kinase dependent pathway
-
2 directly activate ENaC. As discussed in this manuscript, ROS could serve as downstream signaling molecules for direct effect of Ang II
-
2 directly activate ENaC. As discussed in this manuscript, ROS could serve as downstream signaling molecules for direct effect of Ang II.
-
(2011)
J Biol Chem.
, vol.286
, Issue.37
, pp. 32444-32453
-
-
Ma, H.P.1
-
58
-
-
0027327112
-
Regulation of Na channels of the rat cortical collecting tubule by aldosterone
-
Pacha J, Frindt G, Antonian L, et al. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol. 1993;102:25-42. (Pubitemid 23210591)
-
(1993)
Journal of General Physiology
, vol.102
, Issue.1
, pp. 25-42
-
-
Pacha, J.1
Frindt, G.2
Antonian, L.3
Silver, R.B.4
Palmer, L.G.5
-
59
-
-
0034997951
-
Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: Possible role of SGK
-
11249859 1:CAS:528:DC%2BD3MXjtV2gs78%3D
-
Loffing J, Zecevic M, Feraille E, et al. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol. 2001;280:F675-82.
-
(2001)
Am J Physiol Renal Physiol
, vol.280
-
-
Loffing, J.1
Zecevic, M.2
Feraille, E.3
-
60
-
-
33847402692
-
Salt, sodium channels, and SGK1
-
DOI 10.1172/JCI31538
-
Pearce D, Kleyman TR. Salt, sodium channels, and SGK1. J Clin Invest. 2007;117:592-5. (Pubitemid 46348515)
-
(2007)
Journal of Clinical Investigation
, vol.117
, Issue.3
, pp. 592-595
-
-
Pearce, D.1
Kleyman, T.R.2
-
61
-
-
78751647164
-
Role of the ubiquitin system in regulating ion transport
-
20972579 10.1007/s00424-010-0893-2 1:CAS:528:DC%2BC3MXjsVKg
-
Rotin D, Staub O. Role of the ubiquitin system in regulating ion transport. Pflugers Arch. 2011;461:1-21.
-
(2011)
Pflugers Arch
, vol.461
, pp. 1-21
-
-
Rotin, D.1
Staub, O.2
-
62
-
-
64149085069
-
Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC)
-
19277701 10.1007/s00424-009-0656-0 1:CAS:528:DC%2BD1MXktVGks7c%3D
-
Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch. 2009;458:111-35.
-
(2009)
Pflugers Arch
, vol.458
, pp. 111-135
-
-
Loffing, J.1
Korbmacher, C.2
-
63
-
-
41349100090
-
A novel protein kinase signaling pathway essential for blood pressure regulation in humans
-
DOI 10.1016/j.tem.2008.01.001, PII S1043276008000076
-
Kahle KT, Rinehart J, Giebisch G, et al. A novel protein kinase signaling pathway essential for blood pressure regulation in humans. Trends Endocrinol Metab. 2008;19:91-5. (Pubitemid 351447290)
-
(2008)
Trends in Endocrinology and Metabolism
, vol.19
, Issue.3
, pp. 91-95
-
-
Kahle, K.T.1
Rinehart, J.2
Giebisch, G.3
Gamba, G.4
Hebert, S.C.5
Lifton, R.P.6
-
64
-
-
17944373014
-
Human hypertension caused by mutations in WNK kinases
-
DOI 10.1126/science.1062844
-
Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107-12. (Pubitemid 32758085)
-
(2001)
Science
, vol.293
, Issue.5532
, pp. 1107-1112
-
-
Wilson, F.H.1
Disse-Nicodeme, S.2
Choate, K.A.3
Ishikawa, K.4
Nelson-Williams, C.5
Desitter, I.6
Gunel, M.7
Milford, D.V.8
Lipkin, G.W.9
Achard, J.-M.10
Feely, M.P.11
Dussol, B.12
Berland, Y.13
Unwin, R.J.14
Mayan, H.15
Simon, D.B.16
Farfel, Z.17
Jeunemaitre, X.18
Lifton, R.P.19
-
65
-
-
84859642327
-
Advances in WNK signaling of salt and potassium metabolism: Clinical implications
-
22508439 10.1159/000337479 1:CAS:528:DC%2BC38Xms1ahtbY%3D
-
Arroyo JP, Gamba G. Advances in WNK signaling of salt and potassium metabolism: clinical implications. Am J Nephrol. 2012;35:379-86.
-
(2012)
Am J Nephrol
, vol.35
, pp. 379-386
-
-
Arroyo, J.P.1
Gamba, G.2
-
66
-
-
84859826701
-
WNK kinases and the kidney
-
22405999 10.1016/j.yexcr.2012.02.029 1:CAS:528:DC%2BC38Xlt1Knurs%3D
-
Hoorn EJ, Ellison DH. WNK kinases and the kidney. Exp Cell Res. 2012;318:1020-6.
-
(2012)
Exp Cell Res
, vol.318
, pp. 1020-1026
-
-
Hoorn, E.J.1
Ellison, D.H.2
-
67
-
-
79953304695
-
The WNK kinase network regulating sodium, potassium, and blood pressure
-
21436285 10.1681/ASN.2010080827 1:CAS:528:DC%2BC3MXlslKqurc%3D
-
Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011;22:605-14.
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 605-614
-
-
Hoorn, E.J.1
Nelson, J.H.2
McCormick, J.A.3
Ellison, D.H.4
-
68
-
-
43549123915
-
Molecular physiology of the WNK kinases
-
DOI 10.1146/annurev.physiol.70.113006.100651
-
Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases. Annu Rev Physiol. 2008;70:329-55. (Pubitemid 351738183)
-
(2008)
Annual Review of Physiology
, vol.70
, pp. 329-355
-
-
Kahle, K.T.1
Ring, A.M.2
Lifton, R.P.3
-
69
-
-
0035662188
-
Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron
-
11704552 1:CAS:528:DC%2BD3MXptlKntbc%3D
-
Loffing J, Loffing-Cueni D, Valderrabano V, et al. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol. 2001;281:F1021-7.
-
(2001)
Am J Physiol Renal Physiol
, vol.281
-
-
Loffing, J.1
Loffing-Cueni, D.2
Valderrabano, V.3
-
70
-
-
0037376254
-
Sodium and calcium transport pathways along the mammalian distal nephron: From rabbit to human
-
12620920 1:CAS:528:DC%2BD3sXjsVWqt7w%3D
-
Loffing J, Kaissling B. Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol. 2003;284:F628-43.
-
(2003)
Am J Physiol Renal Physiol
, vol.284
-
-
Loffing, J.1
Kaissling, B.2
-
71
-
-
0029189663
-
Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney
-
8594886 1:STN:280:DyaK287jsVOqtA%3D%3D
-
Obermuller N, Bernstein P, Velazquez H, et al. Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am J Physiol. 1995;269:F900-10.
-
(1995)
Am J Physiol
, vol.269
-
-
Obermuller, N.1
Bernstein, P.2
Velazquez, H.3
-
72
-
-
0028091073
-
Both low sodium and high potassium intake increase the level of adrenal angiotensin-II receptor type 1, but not that of adrenocorticotropin receptor
-
DOI 10.1210/en.134.2.776
-
LeHoux JG, Bird IM, Rainey WE, et al. Both low sodium and high potassium intake increase the level of adrenal angiotensin-II receptor type 1, but not that of adrenocorticotropin receptor. Endocrinology. 1994;134:776-82. (Pubitemid 24057222)
-
(1994)
Endocrinology
, vol.134
, Issue.2
, pp. 776-782
-
-
Lehoux, J.-G.1
Bird, I.M.2
Rainey, W.E.3
Tremblay, A.4
Ducharme, L.5
-
73
-
-
0032564369
-
The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein
-
DOI 10.1073/pnas.95.24.14552
-
Kim GH, Masilamani S, Turner R, et al. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A. 1998;95:14552-7. (Pubitemid 28549405)
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.24
, pp. 14552-14557
-
-
Kim, G.-H.1
Masilamani, S.2
Turner, R.3
Mitchell, C.4
Wade, J.B.5
Knepper, M.A.6
-
74
-
-
0036839521
-
Sodium transporter abundance profiling in kidney: Effect of spironolactone
-
12372767
-
Nielsen J, Kwon TH, Masilamani S, et al. Sodium transporter abundance profiling in kidney: effect of spironolactone. Am J Physiol Renal Physiol. 2002;283:F923-33.
-
(2002)
Am J Physiol Renal Physiol
, vol.283
-
-
Nielsen, J.1
Kwon, T.H.2
Masilamani, S.3
-
75
-
-
69449100055
-
- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1
-
19570885 10.1152/ajprenal.00030.2009 1:CAS:528:DC%2BD1MXhtFGrur%2FP
-
- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol. 2009;297:F704-12.
-
(2009)
Am J Physiol Renal Physiol
, vol.297
-
-
Vallon, V.1
Schroth, J.2
Lang, F.3
-
76
-
-
77958022519
-
Effects of dietary K on cell-surface expression of renal ion channels and transporters
-
20702602 10.1152/ajprenal.00323.2010 1:CAS:528:DC%2BC3cXhtlKlurjN
-
Frindt G, Palmer LG. Effects of dietary K on cell-surface expression of renal ion channels and transporters. Am J Physiol Renal Physiol. 2010;299(4):F890-7.
-
(2010)
Am J Physiol Renal Physiol
, vol.299
, Issue.4
, pp. 890-897
-
-
Frindt, G.1
Palmer, L.G.2
-
78
-
-
63149133727
-
Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway
-
19240212 10.1073/pnas.0813238106 1:CAS:528:DC%2BD1MXjslCgs7g%3D
-
San-Cristobal P, Pacheco-Alvarez D, Richardson C, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A. 2009;106:4384-9.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 4384-4389
-
-
San-Cristobal, P.1
Pacheco-Alvarez, D.2
Richardson, C.3
-
80
-
-
84862605632
-
Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway
-
van der Lubbe N, Lim CH, Meima ME, et al. Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway. Pflugers Arch 2012;463:853-63.
-
(2012)
Pflugers Arch
, vol.463
, pp. 853-863
-
-
Van Der Lubbe, N.1
Lim, C.H.2
Meima, M.E.3
-
81
-
-
85027955816
-
Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone
-
van der Lubbe N, Lim CH, Fenton RA, et al. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int. 2011;79:66-76.
-
(2011)
Kidney Int.
, vol.79
, pp. 66-76
-
-
Van Der Lubbe, N.1
Lim, C.H.2
Fenton, R.A.3
-
82
-
-
68049088827
-
+ channel-dependent and -independent mechanisms
-
19474187 10.1152/ajprenal.90528.2008 1:CAS:528:DC%2BD1MXhtVaht7rK
-
+ channel-dependent and -independent mechanisms. Am J Physiol Renal Physiol. 2009;297:F389-96.
-
(2009)
Am J Physiol Renal Physiol
, vol.297
-
-
Frindt, G.1
Palmer, L.G.2
-
83
-
-
79551535153
-
Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels
-
By demonstrating that Ang II inhibits ROMK channels in the cortical collecting duct of rats on a low sodium diet, this study suggests that Ang II has an important role in suppressing potassium secretion during volume depletion
-
• Yue P, Sun P, Lin DH, et al. Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels. Kidney Int. 2011;79:423-31. By demonstrating that Ang II inhibits ROMK channels in the cortical collecting duct of rats on a low sodium diet, this study suggests that Ang II has an important role in suppressing potassium secretion during volume depletion.
-
(2011)
Kidney Int.
, vol.79
, pp. 423-431
-
-
Yue, P.1
Sun, P.2
Lin, D.H.3
-
84
-
-
34250379991
-
Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction
-
DOI 10.1074/jbc.M607477200
-
Wei Y, Zavilowitz B, Satlin LM, Wang WH. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction. J Biol Chem. 2007;282:6455-62. (Pubitemid 47100885)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.9
, pp. 6455-6462
-
-
Wei, Y.1
Zavilowitz, B.2
Satlin, L.M.3
Wang, W.-H.4
-
85
-
-
54449098229
-
Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice
-
18579707 10.1152/ajprenal.00019.2008 1:CAS:528:DC%2BD1cXhtFCgtLnL
-
Gonzalez-Villalobos RA, Seth DM, Satou R, et al. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295:F772-9.
-
(2008)
Am J Physiol Renal Physiol
, vol.295
-
-
Gonzalez-Villalobos, R.A.1
Seth, D.M.2
Satou, R.3
-
86
-
-
74049086166
-
Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition
-
19846570 10.1152/ajprenal.00477.2009 1:CAS:528:DC%2BC3cXhsFKlur8%3D
-
Gonzalez-Villalobos RA, Satou R, Ohashi N, et al. Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition. Am J Physiol Renal Physiol. 2010;298:F150-7.
-
(2010)
Am J Physiol Renal Physiol
, vol.298
-
-
Gonzalez-Villalobos, R.A.1
Satou, R.2
Ohashi, N.3
-
87
-
-
0036181980
-
Regulation of intrarenal angiotensin II in hypertension
-
DOI 10.1161/hy0202.103821
-
Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension. 2002;39:316-22. (Pubitemid 34165142)
-
(2002)
Hypertension
, vol.39
, Issue.2
, pp. 316-322
-
-
Navar, L.G.1
Harrison-Bernard, L.M.2
Nishiyama, A.3
Kobori, H.4
-
88
-
-
0033404955
-
Elements of a paracrine tubular renin-angiotensin system along the entire nephron
-
Rohrwasser A, Morgan T, Dillon HF, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension. 1999;34:1265-74. (Pubitemid 30002393)
-
(1999)
Hypertension
, vol.34
, Issue.6
, pp. 1265-1274
-
-
Rohrwasser, A.1
Morgan, T.2
Dillon, H.F.3
Zhao, L.4
Callaway, C.W.5
Hillas, E.6
Zhang, S.7
Cheng, T.8
Inagami, T.9
Ward, K.10
Terreros, D.A.11
Lalouel, J.-M.12
-
89
-
-
79954426057
-
Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension
-
21339086 10.1016/j.coph.2011.01.009 1:CAS:528:DC%2BC3MXksFymsLs%3D
-
Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol. 2011;11:180-6.
-
(2011)
Curr Opin Pharmacol
, vol.11
, pp. 180-186
-
-
Navar, L.G.1
Prieto, M.C.2
Satou, R.3
Kobori, H.4
-
90
-
-
77952304465
-
Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease
-
20484892 10.1159/000313363 1:CAS:528:DC%2BC3cXnvFWhsr4%3D
-
Siragy HM, Carey RM. Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am J Nephrol. 2010;31:541-50.
-
(2010)
Am J Nephrol
, vol.31
, pp. 541-550
-
-
Siragy, H.M.1
Carey, R.M.2
-
91
-
-
0030822547
-
Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron
-
9087685 1:CAS:528:DyaK2sXit1Wktr4%3D
-
Casarini DE, Boim MA, Stella RC, et al. Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron. Am J Physiol. 1997;272:F405-9.
-
(1997)
Am J Physiol
, vol.272
-
-
Casarini, D.E.1
Boim, M.A.2
Stella, R.C.3
-
92
-
-
0042266232
-
Angiotensin I conversion to angiotensin II stimulates cortical collecting duct sodium transport
-
DOI 10.1161/01.HYP.0000081221.36703.01
-
Komlosi P, Fuson AL, Fintha A, et al. Angiotensin I conversion to angiotensin II stimulates cortical collecting duct sodium transport. Hypertension. 2003;42:195-9. (Pubitemid 36944596)
-
(2003)
Hypertension
, vol.42
, Issue.2
, pp. 195-199
-
-
Komlosi, P.1
Fuson, A.L.2
Fintha, A.3
Peti-Peterdi, J.4
Rosivall, L.5
Warnock, D.G.6
Bell, P.D.7
-
93
-
-
3543026852
-
Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats
-
DOI 10.1161/01.HYP.0000135678.20725.54
-
Prieto-Carrasquero MC, Harrison-Bernard LM, Kobori H, et al. Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension. 2004;44:223-9. (Pubitemid 39014242)
-
(2004)
Hypertension
, vol.44
, Issue.2
, pp. 223-229
-
-
Prieto-Carrasquero, M.C.1
Harrison-Bernard, L.M.2
Kobori, H.3
Ozawa, Y.4
Hering-Smith, K.S.5
Hamm, L.L.6
Navar, L.G.7
-
94
-
-
45849111800
-
Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip goldblatt hypertensive rats
-
18426992 10.1161/HYPERTENSIONAHA.108.110916 1:CAS:528: DC%2BD1cXlvFaitL4%3D
-
Prieto-Carrasquero MC, Botros FT, Pagan J, et al. Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip goldblatt hypertensive rats. Hypertension. 2008;51:1590-6.
-
(2008)
Hypertension
, vol.51
, pp. 1590-1596
-
-
Prieto-Carrasquero, M.C.1
Botros, F.T.2
Pagan, J.3
-
95
-
-
36248967155
-
Effects of dietary salt on intrarenal angiotensin system, NAD(P)H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-κB activity in salt-sensitive and -resistant rat kidneys
-
DOI 10.1159/000110021
-
Chandramohan G, Bai Y, Norris K, et al. Effects of dietary salt on intrarenal angiotensin system, NAD(P)H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-kappaB activity in salt-sensitive and -resistant rat kidneys. Am J Nephrol. 2008;28:158-67. (Pubitemid 350126507)
-
(2008)
American Journal of Nephrology
, vol.28
, Issue.1
, pp. 158-167
-
-
Chandramohan, G.1
Bai, Y.2
Norris, K.3
Rodriguez-Iturbe, B.4
Vaziri, N.D.5
-
96
-
-
77949868470
-
T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats
-
10.1152/ajpregu.00298.2009
-
De MC, Das S, Lund H, Mattson DL. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1136-42.
-
(2010)
Am J Physiol Regul Integr Comp Physiol
, vol.298
-
-
De, M.C.1
Das, S.2
Lund, H.3
Mattson, D.L.4
-
97
-
-
68449101174
-
Aberrant ENaC activation in Dahl salt-sensitive rats
-
19458538 10.1097/HJH.0b013e32832c7d23 1:CAS:528:DC%2BD1MXoslOgt7w%3D
-
Kakizoe Y, Kitamura K, Ko T, Wakida N, Maekawa A, Miyoshi T, et al. Aberrant ENaC activation in Dahl salt-sensitive rats. J Hypertens. 2009;27:1679-89.
-
(2009)
J Hypertens
, vol.27
, pp. 1679-1689
-
-
Kakizoe, Y.1
Kitamura, K.2
Ko, T.3
Wakida, N.4
Maekawa, A.5
Miyoshi, T.6
-
98
-
-
78649662102
-
High glucose and renin release: The role of succinate and GPR91
-
20861827 10.1038/ki.2010.333 1:CAS:528:DC%2BC3cXhsV2gur%2FF
-
Peti-Peterdi J. High glucose and renin release: the role of succinate and GPR91. Kidney Int. 2010;78:1214-7.
-
(2010)
Kidney Int
, vol.78
, pp. 1214-1217
-
-
Peti-Peterdi, J.1
-
99
-
-
46749087465
-
Succinate receptor GPR91 provides a direct link between high glucose levels and rennin release in murine and rabbit kidney
-
DOI 10.1172/JC133293
-
Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 2008;118:2526-34. (Pubitemid 351949780)
-
(2008)
Journal of Clinical Investigation
, vol.118
, Issue.7
, pp. 2526-2534
-
-
Toma, I.1
Kang, J.J.2
Sipos, A.3
Vargas, S.4
Bansal, E.5
Hanner, F.6
Meer, E.7
Peti-Peterdi, J.8
|