메뉴 건너뛰기




Volumn 14, Issue 4, 2012, Pages 974-991

Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network

Author keywords

Bayesian regularization; NAR network; River discharge; Wavelet transformation; Weihe River

Indexed keywords


EID: 84872401589     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2012.143     Document Type: Article
Times cited : (45)

References (66)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J. & See, L. 2000 Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14, 2157-2172.
    • (2000) Hydrol. Process. , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 2
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and crosswavelet transform models
    • Adamowski, J. 2008 River flow forecasting using wavelet and crosswavelet transform models. J. Hydrol. Process. 22, 4877-4891.
    • (2008) J. Hydrol. Process. , vol.22 , pp. 4877-4891
    • Adamowski, J.1
  • 3
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407, 28-40.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 4
    • 77955276087 scopus 로고    scopus 로고
    • Development of a wavelet transform and neural network method for flow forecasting of nonperennial rivers in semi-arid watersheds
    • Adamowski, J. & Sun, K. 2010 Development of a wavelet transform and neural network method for flow forecasting of nonperennial rivers in semi-arid watersheds. J. Hydrol. 390, 85-91.
    • (2010) J. Hydrol. , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 5
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool
    • Aqil, M., Kita, I., Yano, A. & Nishiyama, S. 2007 Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. J. Environ. Manage. 85, 215-223.
    • (2007) J. Environ. Manage. , vol.85 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 6
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques-case study: River flow forecasting
    • Atiya, A. F., El-Shoura, S. M., Shaheen, S. I. & El-Sherif, M. S. 1999 A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE T. Neural Network. 10, 402-409.
    • (1999) IEEE T. Neural Network , vol.10 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 7
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem, A., Campbell, J. & Murtagh, F. 1998 Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput Intell. Finance 6, 5-12.
    • (1998) J. Comput Intell. Finance , vol.6 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 8
    • 79955806168 scopus 로고    scopus 로고
    • A comparison between artificial neural network method and nonlinear regression method to estimate the missing hydrometric data
    • Bahrami, J., Kavianpour, M., Abdi, M., Telvari, A., Abbaspour, K. & Rouzkhash, B. 2011 A comparison between artificial neural network method and nonlinear regression method to estimate the missing hydrometric data. J. Hydroinf. 13, 245-254.
    • (2011) J. Hydroinf. , vol.13 , pp. 245-254
    • Bahrami, J.1    Kavianpour, M.2    Abdi, M.3    Telvari, A.4    Abbaspour, K.5    Rouzkhash, B.6
  • 10
    • 0036715707 scopus 로고    scopus 로고
    • Performance of neural networks in daily streamflow forecasting
    • Birikundavyi, S., Labib, R., Trung, H. T. & Rousselle, J. 2002 Performance of neural networks in daily streamflow forecasting. J. Hydrol. Eng. 7, 392-398.
    • (2002) J. Hydrol. Eng. , vol.7 , pp. 392-398
    • Birikundavyi, S.1    Labib, R.2    Trung, H.T.3    Rousselle, J.4
  • 11
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models
    • Brath, A., Montanari, A. & Toth, E. 2002 Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models. Hydrol. Earth Syst. Sci. 6, 627-639.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 627-639
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 12
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campólo, M., Andreussi, P. & Soldati, A. 1999 River flood forecasting with a neural network model. Water Resour. Res. 35, 1191-1197.
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campólo, M.1    Andreussi, P.2    Soldati, A.3
  • 13
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flowforecasting using neural networks:Wavelet transforms and data partitioning
    • Cannas, B., Fanni, A., See, L. & Sias, G. 2006 Data preprocessing for river flowforecasting using neural networks:Wavelet transforms and data partitioning. Phys. Chem. Earth 31, 1164-1171.
    • (2006) Phys. Chem. Earth , vol.31 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 14
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang, F. J. & Chen, Y. C. 2001 A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245, 153-164.
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 15
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu, H. K. 2003 Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 14, 417-427.
    • (2003) Environmetrics , vol.14 , pp. 417-427
    • Cigizoglu, H.K.1
  • 16
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu, H. K. 2004 Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv. Water Resour. 27 (2), 185-195.
    • (2004) Adv. Water Resour. , vol.27 , Issue.2 , pp. 185-195
    • Cigizoglu, H.K.1
  • 17
    • 15944369315 scopus 로고    scopus 로고
    • Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model
    • Collischonn, W., Haas, R., Andreolli, I. & Tucci, C. E. M. 2005 Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model. J. Hydrol. 305, 87-98.
    • (2005) J. Hydrol. , vol.305 , pp. 87-98
    • Collischonn, W.1    Haas, R.2    Andreolli, I.3    Tucci, C.E.M.4
  • 18
    • 38349029410 scopus 로고    scopus 로고
    • Study of the wavelet basis selections
    • (Y. Wang, Y. M. Cheng & H. Liu, eds). Springer, Berlin, Heidelberg
    • Cui, H. & Song, G. 2007 Study of the wavelet basis selections. In: Computational Intelligence and Security (Y. Wang, Y. M. Cheng & H. Liu, eds). Springer, Berlin, Heidelberg, pp. 1009-1017.
    • (2007) Computational Intelligence and Security , pp. 1009-1017
    • Cui, H.1    Song, G.2
  • 19
    • 0025482241 scopus 로고
    • Thewavelet transform, time-frequency localization and signal analysis
    • Daubechies, I. 1990 Thewavelet transform, time-frequency localization and signal analysis. IEEE T. Inform. Theory 36, 961-1005.
    • (1990) IEEE T. Inform. Theory , vol.36 , pp. 961-1005
    • Daubechies, I.1
  • 20
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. 2001 Hydrological modelling using artificial neural networks. Prog. Phys. Geog. 25, 80-108.
    • (2001) Prog. Phys. Geog. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 21
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana basin, Portugal
    • Demirel, M. C., Venancio, A. & Kahya, E. 2009 Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv. Eng. Softw. 40, 467-473.
    • (2009) Adv. Eng. Softw. , vol.40 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 22
    • 41049106111 scopus 로고    scopus 로고
    • Integrated clustering modeling with backpropagation neural network for effcient customer relationship management
    • (D. Ruan, G. Chen, E. E. Kerre & G. Wets, eds). Springer, Berlin, Heidelberg
    • Ertay, T. & Çekyay, B. 2005 Integrated Clustering Modeling with Backpropagation Neural Network for Effcient Customer Relationship Management. In: Intelligent Data Mining: Techniques and Applications (D. Ruan, G. Chen, E. E. Kerre & G. Wets, eds). Springer, Berlin, Heidelberg, pp. 355-373.
    • (2005) Intelligent Data Mining: Techniques and Applications , pp. 355-373
    • Ertay, T.1    Çekyay, B.2
  • 23
    • 41049094220 scopus 로고    scopus 로고
    • On hydrologic calculation using artificial neural networks
    • Feng, L. & Hong, W. 2008 On hydrologic calculation using artificial neural networks. Appl. Math. Lett. 21, 453-458.
    • (2008) Appl. Math. Lett. , vol.21 , pp. 453-458
    • Feng, L.1    Hong, W.2
  • 24
    • 0023794205 scopus 로고
    • A model of river flow forecasting for a small forested mountain catchment
    • Fukushima, Y. 1988 A model of river flow forecasting for a small forested mountain catchment. Hydrol. Process. 2, 167-185.
    • (1988) Hydrol. Process. , vol.2 , pp. 167-185
    • Fukushima, Y.1
  • 25
    • 0028974861 scopus 로고
    • A distributed model for real-time flood forecasting using digital elevation models
    • Garrote, L. & Bras, R. L. 1995 A distributed model for real-time flood forecasting using digital elevation models. J. Hydrol. 167, 279-306.
    • (1995) J. Hydrol. , vol.167 , pp. 279-306
    • Garrote, L.1    Bras, R.L.2
  • 26
    • 84872420640 scopus 로고    scopus 로고
    • Available via Mul-gor Consulting Ltd, (accessed on 20 March 2011)
    • Goring, D. 2006 OrthogonalWavelet Decomposition. Available via Mul-gor Consulting Ltd, http://www.tideman.co.nz/Salalah/OrthWaveDecomp.html (accessed on 20 March 2011).
    • (2006) Orthogonal Wavelet Decomposition
    • Goring, D.1
  • 27
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • Huang, W., Xu, B. & Chan Hilton, A. 2004 Forecasting flows in Apalachicola River using neural networks. Hydrol. Process. 18, 2545-2564.
    • (2004) Hydrol. Process. , vol.18 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chan Hilton, A.3
  • 28
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain, A. & Kumar, A.M. 2007 Hybrid neural network models for hydrologic time series forecasting.Appl. SoftComput. 7, 585-592.
    • (2007) Appl. SoftComput. , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 29
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim, T. & Valdés, J. B. 2003 Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 8, 319.
    • (2003) J. Hydrol. Eng. , vol.8 , pp. 319
    • Kim, T.1    Valdés, J.B.2
  • 30
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kişi, Ö. 2005 Daily river flow forecasting using artificial neural networks and auto-regressive models. Turk. J. Eng. Environ. Sci. 29, 9-20.
    • (2005) Turk. J. Eng. Environ. Sci. , vol.29 , pp. 9-20
    • Kişi, Ö.1
  • 31
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kişi, Ö. 2007 Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 12, 532-539.
    • (2007) J. Hydrol. Eng. , vol.12 , pp. 532-539
    • Kişi, Ö.1
  • 32
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro - Wavelet technique
    • Kişi, Ö. 2008 Stream flow forecasting using neuro - wavelet technique. Hydrol. Process. 22 (20), 4142-4152.
    • (2008) Hydrol. Process. , vol.22 , Issue.20 , pp. 4142-4152
    • Kişi, Ö.1
  • 33
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kişi, Ö. 2009 Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J. Hydrol. Eng. 8, 773-782.
    • (2009) J. Hydrol. Eng. , vol.8 , pp. 773-782
    • Kişi, Ö.1
  • 34
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi, O. & Cigizoglu, H. K. 2007 Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Syst. 24, 211-231.
    • (2007) Civ. Eng. Environ. Syst. , vol.24 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.K.2
  • 35
    • 84863127382 scopus 로고    scopus 로고
    • Time series modeling of river flow using wavelet neural networks
    • Krishna, B., Rao, Y. R. S. & Nayak, P. C. 2011 Time series modeling of river flow using wavelet neural networks. J. Water Resour. Prot. 3, 50-59.
    • (2011) J. Water Resour. Prot. , vol.3 , pp. 50-59
    • Krishna, B.1    Rao, Y.R.S.2    Nayak, P.C.3
  • 36
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. 1991 Bayesian interpolation. Neural Comput. 4, 415-447.
    • (1991) Neural Comput , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 37
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H. R. & Dandy, G. C. 1996 The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 32, 1013-1022.
    • (1996) Water Resour. Res. , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 38
    • 84966210236 scopus 로고
    • Multiresolution approximations and wavelet orthonormal bases of L 2 (R)
    • Mallat, S. G. 1989 Multiresolution approximations and wavelet orthonormal bases of L 2 (R). T. Am. Math. Soc. 315, 69-88.
    • (1989) T. Am. Math. Soc. , vol.315 , pp. 69-88
    • Mallat, S.G.1
  • 39
    • 78649951228 scopus 로고    scopus 로고
    • Automated classification of galaxies using transformed domain features
    • Mohamed, M. A. & Atta, M. M. 2010 Automated classification of galaxies using transformed domain features. Int. J. Comput. Sci. Network Security 10, 86-91.
    • (2010) Int. J. Comput. Sci. Network Security , vol.10 , pp. 86-91
    • Mohamed, M.A.1    Atta, M.M.2
  • 40
    • 33750442194 scopus 로고    scopus 로고
    • Parameter estimation of an ARMA model for river flow forecasting using goal programming
    • Mohammadi, K., Eslami, H. R. & Kahawita, R. 2006 Parameter estimation of an ARMA model for river flow forecasting using goal programming. J. Hydrol. 331, 293-299.
    • (2006) J. Hydrol. , vol.331 , pp. 293-299
    • Mohammadi, K.1    Eslami, H.R.2    Kahawita, R.3
  • 42
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-A discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. 1970 River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 10, 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 43
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani, V., Alami, M. T. & Aminfar, M. H. 2009 A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intel. 22, 466-472.
    • (2009) Eng. Appl. Artif. Intel. , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 44
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • Partal, T. 2009 River flow forecasting using different artificial neural network algorithms and wavelet transform. Can. J. Civil Eng. 36, 26-38.
    • (2009) Can. J. Civil Eng. , vol.36 , pp. 26-38
    • Partal, T.1
  • 45
    • 0035879624 scopus 로고    scopus 로고
    • Multivariate nonlinear prediction of river flows
    • Porporato, A. & Ridolfi, L. 2001 Multivariate nonlinear prediction of river flows. J. Hydrol. 248, 109-122.
    • (2001) J. Hydrol. , vol.248 , pp. 109-122
    • Porporato, A.1    Ridolfi, L.2
  • 46
    • 84872425466 scopus 로고    scopus 로고
    • Daily river flow forecasting using wavelet ANN hybrid models
    • Pramanik, N., Panda, R. K. & Singh, A. 2010 Daily river flow forecasting using wavelet ANN hybrid models. J. Hydroinf. 12, 1-15.
    • (2010) J. Hydroinf. , vol.12 , pp. 1-15
    • Pramanik, N.1    Panda, R.K.2    Singh, A.3
  • 47
    • 70350495365 scopus 로고    scopus 로고
    • Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
    • Sahoo, G. B., Schladow, S. G. & Reuter, J. E. 2009 Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J. Hydrol. 378, 325-342.
    • (2009) J. Hydrol. , vol.378 , pp. 325-342
    • Sahoo, G.B.1    Schladow, S.G.2    Reuter, J.E.3
  • 48
    • 0030131272 scopus 로고    scopus 로고
    • A nearest neighbour linear perturbation model for river flow forecasting
    • Shamseldin, A. Y. & O'Connor, K. M. 1996 A nearest neighbour linear perturbation model for river flow forecasting. J. Hydrol. 179, 353-375.
    • (1996) J. Hydrol. , vol.179 , pp. 353-375
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 49
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A.W. & Fernando, T. 2002 River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265, 225-245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.3
  • 50
    • 34247275833 scopus 로고    scopus 로고
    • Ecological and environmental instream flow requirements for the Wei River - The largest tributary of the Yellow River
    • Song, J. X., Xu, Z. X., Liu, C. M. & Li, H. E. 2007 Ecological and environmental instream flow requirements for the Wei River -the largest tributary of the Yellow River. Hydrol. Process. 21, 1066-1073.
    • (2007) Hydrol. Process. , vol.21 , pp. 1066-1073
    • Song, J.X.1    Xu, Z.X.2    Liu, C.M.3    Li, H.E.4
  • 51
    • 0034470269 scopus 로고    scopus 로고
    • Simulation of daily and monthly stream discharge from small watersheds using the SWAT model
    • Spruill, C. A., Workman, S. R. & Taraba, J. L. 2000 Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. T. Asae 43, 1431-1439.
    • (2000) T. Asae , vol.43 , pp. 1431-1439
    • Spruill, C.A.1    Workman, S.R.2    Taraba, J.L.3
  • 52
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • Srinivasulu, S. & Jain, A. 2006 A comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl. Soft Comput. 6, 295-306.
    • (2006) Appl. Soft Comput. , vol.6 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 53
    • 57949116748 scopus 로고    scopus 로고
    • River flow prediction using an integrated approach
    • Srinivasulu, S. & Jain, A. 2009 River flow prediction using an integrated approach. J. Hydrol. Eng. 14, 75-75.
    • (2009) J. Hydrol. Eng. , vol.14 , pp. 75-75
    • Srinivasulu, S.1    Jain, A.2
  • 54
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari, M. K. & Chatterjee, C. 2010 Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 394, 45-470.
    • (2010) J. Hydrol. , vol.394 , pp. 45-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 55
    • 79959790257 scopus 로고    scopus 로고
    • A new Wavelet-Bootstrap-ANN hybrid model for daily discharge forecasting
    • Tiwari, M. K. & Chatterjee, C. 2011 A new Wavelet-Bootstrap-ANN hybrid model for daily discharge forecasting, J. Hydroinf. 13, 500-519.
    • (2011) J. Hydroinf. , vol.13 , pp. 500-519
    • Tiwari, M.K.1    Chatterjee, C.2
  • 56
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar, A. S. & Markus, M. 2000 Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5, 156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 57
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of shortterm rainfall prediction models for real-time flood forecasting
    • Toth, E., Brath, A. & Montanari, A. 2000 Comparison of shortterm rainfall prediction models for real-time flood forecasting. J. Hydrol. 239, 132-147.
    • (2000) J. Hydrol. , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 58
    • 0032880651 scopus 로고    scopus 로고
    • Back-propagation neural network in tidal-level forecasting
    • Tsai, C. P. & Lee, T. L. 1999 Back-propagation neural network in tidal-level forecasting. J. Waterw. Port. Coastal. Ocean Eng. 125, 195-202.
    • (1999) J. Waterw. Port. Coastal. Ocean Eng. , vol.125 , pp. 195-202
    • Tsai, C.P.1    Lee, T.L.2
  • 59
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, W. & Ding, J. 2003 Wavelet network model and its application to the prediction of hydrology. Nature and Science 1, 67-71.
    • (2003) Nature and Science , vol.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 60
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • Wang, W., Gelder, P. H., Vrijling, J. K. & Ma, J. 2006 Forecasting daily streamflow using hybrid ANN models. J. Hydrol. 324, 383-399.
    • (2006) J. Hydrol. , vol.324 , pp. 383-399
    • Wang, W.1    Gelder, P.H.2    Vrijling, J.K.3    Ma, J.4
  • 61
    • 34247216614 scopus 로고    scopus 로고
    • Research on the conversion relationships between the river and groundwater in the Yellow River drainage area
    • Wang, W., Kong, J., Duan, L., Wang, Y. & Ma, X. 2004 Research on the conversion relationships between the river and groundwater in the Yellow River drainage area. Sci. China Series E. Tech. Sci. (in Chinese) 47, 25-41.
    • (2004) Sci. China Series E. Tech. Sci. (In Chinese) , vol.47 , pp. 25-41
    • Wang, W.1    Kong, J.2    Duan, L.3    Wang, Y.4    Ma, X.5
  • 63
    • 84855462883 scopus 로고    scopus 로고
    • Simulating and predicting river discharge time series using a wavelet-neural network hybrid modeling approach
    • Wei, S., Song, J. & Khan, N. I. 2012 Simulating and predicting river discharge time series using a wavelet-neural network hybrid modeling approach. Hydrol. Process. 26, 281-296.
    • (2012) Hydrol. Process. , vol.26 , pp. 281-296
    • Wei, S.1    Song, J.2    Khan, N.I.3
  • 64
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu, C. L., Chau, K. W. & Li, Y. S. 2009a Methods to improve neural network performance in daily flows prediction. J. Hydrol. 372 (1-4), 80-93.
    • (2009) J. Hydrol. , vol.372 , Issue.1-4 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 65
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu, C. L., Chau, K. & Li, Y. S. 2009b Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 45, W08432.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.2    Li, Y.S.3
  • 66
    • 34247257798 scopus 로고    scopus 로고
    • Evaluation of water quality and countermeasures of pollution prevention for Weihe river
    • Zhao, H. 2003 Evaluation of water quality and countermeasures of pollution prevention for Weihe river. Northwest Water Resour. Water Eng. (in Chinese) 14 (1), 28-31.
    • (2003) Northwest Water Resour. Water Eng. (In Chinese) , vol.14 , Issue.1 , pp. 28-31
    • Zhao, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.