메뉴 건너뛰기




Volumn 57, Issue 1, 2013, Pages 532-542

Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A; ACETYL COENZYME A ACETYLTRANSFERASE; ANTIMYCIN A1; CDR1 PROTEIN; CDR2 PROTEIN; ERGOSTEROL; FLUCONAZOLE; GLYCEROL; GLYOXYLIC ACID; MITOCHONDRIAL ELECTRON TRANSPORT CHAIN COMPLEX 1; OLIGOMYCIN; PIERICIDIN A; PYRROLE DERIVATIVE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); ROTENONE; TRANSCRIPTOME; UNCLASSIFIED DRUG;

EID: 84872026338     PISSN: 00664804     EISSN: 10986596     Source Type: Journal    
DOI: 10.1128/AAC.01520-12     Document Type: Article
Times cited : (76)

References (46)
  • 2
    • 79955625171 scopus 로고    scopus 로고
    • Current perspectives on echinocandin class drugs
    • Perlin DS. 2011. Current perspectives on echinocandin class drugs. Future Microbiol. 6:441-457.
    • (2011) Future Microbiol. , vol.6 , pp. 441-457
    • Perlin, D.S.1
  • 3
    • 78651473446 scopus 로고    scopus 로고
    • Genetic control of Candida albicans biofilm development
    • Finkel JS, Mitchell AP. 2011. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol. 9:109-118.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 109-118
    • Finkel, J.S.1    Mitchell, A.P.2
  • 5
    • 11144270183 scopus 로고    scopus 로고
    • TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2
    • Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3:1639-1652.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1639-1652
    • Coste, A.T.1    Karababa, M.2    Ischer, F.3    Bille, J.4    Sanglard, D.5
  • 6
    • 47749142093 scopus 로고    scopus 로고
    • Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains
    • Dunkel N, Blass J, Rogers PD, Morschhauser J. 2008. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 69:827-840.
    • (2008) Mol. Microbiol. , vol.69 , pp. 827-840
    • Dunkel, N.1    Blass, J.2    Rogers, P.D.3    Morschhauser, J.4
  • 7
    • 42249110690 scopus 로고    scopus 로고
    • Functional characterization of the CgPGS1 gene reveals a link between mitochondrial phospholipid homeostasis and drug resistance in Candida glabrata
    • Batova M, Borecka-Melkusova S, Simockova M, Dzugasova V, Goffa E, Subik J. 2008. Functional characterization of the CgPGS1 gene reveals a link between mitochondrial phospholipid homeostasis and drug resistance in Candida glabrata. Curr. Genet. 53:313-322.
    • (2008) Curr. Genet. , vol.53 , pp. 313-322
    • Batova, M.1    Borecka-Melkusova, S.2    Simockova, M.3    Dzugasova, V.4    Goffa, E.5    Subik, J.6
  • 10
    • 2142647837 scopus 로고    scopus 로고
    • Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: Roles of calcium signaling and mitochondria
    • Kaur R, Castano I, Cormack BP. 2004. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob. Agents Chemother. 48:1600-1613.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 1600-1613
    • Kaur, R.1    Castano, I.2    Cormack, B.P.3
  • 11
    • 0035080323 scopus 로고    scopus 로고
    • Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata
    • Sanglard D, Ischer F, Bille J. 2001. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob. Agents Chemother. 45:1174-1183.
    • (2001) Antimicrob. Agents Chemother. , vol.45 , pp. 1174-1183
    • Sanglard, D.1    Ischer, F.2    Bille, J.3
  • 13
    • 0034534975 scopus 로고    scopus 로고
    • Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae
    • Hallstrom TC, Moye-Rowley WS. 2000. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J. Biol. Chem. 275:37347-37356.
    • (2000) J. Biol. Chem. , vol.275 , pp. 37347-37356
    • Hallstrom, T.C.1    Moye-Rowley, W.S.2
  • 14
    • 34248398758 scopus 로고    scopus 로고
    • A Candida albicans petite mutant strain with uncoupled oxidative phosphorylation overexpresses MDR1 and has diminished susceptibility to fluconazole and voriconazole
    • Cheng S, Clancy CJ, Nguyen KT, Clapp W, Nguyen MH. 2007. A Candida albicans petite mutant strain with uncoupled oxidative phosphorylation overexpresses MDR1 and has diminished susceptibility to fluconazole and voriconazole. Antimicrob. Agents Chemother. 51:1855-1858.
    • (2007) Antimicrob. Agents Chemother. , vol.51 , pp. 1855-1858
    • Cheng, S.1    Clancy, C.J.2    Nguyen, K.T.3    Clapp, W.4    Nguyen, M.H.5
  • 16
    • 0025080251 scopus 로고
    • Comparative pathogenicity of a wild-type strain and respiratory mutants of Candida albicans in mice
    • Aoki S, Ito-Kuwa S, Nakamura Y, Masuhara T. 1990. Comparative pathogenicity of a wild-type strain and respiratory mutants of Candida albicans in mice. Zentralbl. Bakteriol. 273:332-343.
    • (1990) Zentralbl. Bakteriol. , vol.273 , pp. 332-343
    • Aoki, S.1    Ito-Kuwa, S.2    Nakamura, Y.3    Masuhara, T.4
  • 17
    • 7344253547 scopus 로고    scopus 로고
    • Isolation of a petite mutant from a histidine auxotroph of Candida albicans and its characterization
    • Roth-Ben Arie Z, Altboum Z, Berdicevsky I, Segal E. 1998. Isolation of a petite mutant from a histidine auxotroph of Candida albicans and its characterization. Mycopathologia 141:127-135.
    • (1998) Mycopathologia , vol.141 , pp. 127-135
    • Roth-Ben Arie, Z.1    Altboum, Z.2    Berdicevsky, I.3    Segal, E.4
  • 19
    • 79956059142 scopus 로고    scopus 로고
    • Enzymatic dysfunction of mitochondrial complex i of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death
    • Li D, Chen H, Florentino A, Alex D, Sikorski P, Fonzi WA, Calderone R. 2011. Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. Eukaryot. Cell 10:672-682.
    • (2011) Eukaryot. Cell , vol.10 , pp. 672-682
    • Li, D.1    Chen, H.2    Florentino, A.3    Alex, D.4    Sikorski, P.5    Fonzi, W.A.6    Calderone, R.7
  • 21
    • 34548331719 scopus 로고    scopus 로고
    • Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation
    • Vellucci VF, Gygax SE, Hostetter MK. 2007. Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation. Fungal Genet. Biol. 44:979-990.
    • (2007) Fungal Genet. Biol. , vol.44 , pp. 979-990
    • Vellucci, V.F.1    Gygax, S.E.2    Hostetter, M.K.3
  • 23
    • 0344820721 scopus 로고    scopus 로고
    • Three classes of inhibitors share a common binding domain in mitochondrial complex i (NADH: Ubiquinone oxidoreductase)
    • Okun JG, Lummen P, Brandt U. 1999. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH: ubiquinone oxidoreductase). J. Biol. Chem. 274:2625-2630.
    • (1999) J. Biol. Chem. , vol.274 , pp. 2625-2630
    • Okun, J.G.1    Lummen, P.2    Brandt, U.3
  • 24
    • 77954095162 scopus 로고    scopus 로고
    • Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
    • Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet. 42:590-598.
    • (2010) Nat. Genet. , vol.42 , pp. 590-598
    • Noble, S.M.1    French, S.2    Kohn, L.A.3    Chen, V.4    Johnson, A.D.5
  • 25
    • 25844530060 scopus 로고    scopus 로고
    • Hsp90 potentiates the rapid evolution of new traits: Drug resistance in diverse fungi
    • Cowen LE, Lindquist S. 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:2185-2189.
    • (2005) Science , vol.309 , pp. 2185-2189
    • Cowen, L.E.1    Lindquist, S.2
  • 26
    • 3342996550 scopus 로고    scopus 로고
    • Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters
    • Karababa M, Coste AT, Rognon B, Bille J, Sanglard D. 2004. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob. Agents Chemother. 48:3064-3079.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 3064-3079
    • Karababa, M.1    Coste, A.T.2    Rognon, B.3    Bille, J.4    Sanglard, D.5
  • 28
    • 65749096905 scopus 로고    scopus 로고
    • Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance
    • Tsao S, Rahkhoodaee F, Raymond M. 2009. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob. Agents Chemother. 53:1344-1352.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 1344-1352
    • Tsao, S.1    Rahkhoodaee, F.2    Raymond, M.3
  • 31
    • 78649892486 scopus 로고    scopus 로고
    • Intracellular acetyl unit transport in fungal carbon metabolism
    • Strijbis K, Distel B. 2010. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot. Cell 9:1809-1815.
    • (2010) Eukaryot. Cell , vol.9 , pp. 1809-1815
    • Strijbis, K.1    Distel, B.2
  • 33
    • 0033231013 scopus 로고    scopus 로고
    • Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p
    • van Roermund CW, Hettema EH, van den Berg M, Tabak HF, Wanders RJ. 1999. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 18:5843-5852.
    • (1999) EMBO J. , vol.18 , pp. 5843-5852
    • Van Roermund, C.W.1    Hettema, E.H.2    Van Den Berg, M.3    Tabak, H.F.4    Wanders, R.J.5
  • 36
    • 6344285788 scopus 로고    scopus 로고
    • Transcriptional response of Candida albicans upon internalization by macrophages
    • Lorenz MC, Bender JA, Fink GR. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3:1076-1087.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1076-1087
    • Lorenz, M.C.1    Bender, J.A.2    Fink, G.R.3
  • 37
    • 0035811478 scopus 로고    scopus 로고
    • The glyoxylate cycle is required for fungal virulence
    • Lorenz MC, Fink GR. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412:83-86.
    • (2001) Nature , vol.412 , pp. 83-86
    • Lorenz, M.C.1    Fink, G.R.2
  • 38
    • 33847194205 scopus 로고    scopus 로고
    • Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes
    • Ramírez MA, Lorenz MC. 2007. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot. Cell 6:280-290.
    • (2007) Eukaryot. Cell , vol.6 , pp. 280-290
    • Ramírez, M.A.1    Lorenz, M.C.2
  • 40
    • 79951490839 scopus 로고    scopus 로고
    • Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata
    • Paul S, Schmidt JA, Moye-Rowley WS. 2011. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot. Cell 10:187-197.
    • (2011) Eukaryot. Cell , vol.10 , pp. 187-197
    • Paul, S.1    Schmidt, J.A.2    Moye-Rowley, W.S.3
  • 41
    • 46249124623 scopus 로고    scopus 로고
    • Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae
    • Coste AT, Ramsdale M, Ischer F, Sanglard D. 2008. Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae. Microbiology 154:1491-1501.
    • (2008) Microbiology , vol.154 , pp. 1491-1501
    • Coste, A.T.1    Ramsdale, M.2    Ischer, F.3    Sanglard, D.4
  • 43
    • 79955615960 scopus 로고    scopus 로고
    • Mitochondria as potential targets in antidiabetic therapy
    • Moreira PI, Oliveira CR. 2011. Mitochondria as potential targets in antidiabetic therapy. Handb. Exp. Pharmacol. 203:331-356.
    • (2011) Handb. Exp. Pharmacol. , vol.203 , pp. 331-356
    • Moreira, P.I.1    Oliveira, C.R.2
  • 44
    • 80155167926 scopus 로고    scopus 로고
    • Mitochondria-targeted small molecule therapeutics and probes
    • Smith RA, Hartley RC, Murphy MP. 2011. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signal. 15: 3021-3038.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 3021-3038
    • Smith, R.A.1    Hartley, R.C.2    Murphy, M.P.3
  • 45
    • 0036194529 scopus 로고    scopus 로고
    • Mitochondria as a pharmacological target
    • Szewczyk A, Wojtczak L. 2002. Mitochondria as a pharmacological target. Pharmacol. Rev. 54:101-127.
    • (2002) Pharmacol. Rev. , vol.54 , pp. 101-127
    • Szewczyk, A.1    Wojtczak, L.2
  • 46
    • 80055116385 scopus 로고    scopus 로고
    • Mitochondria and fungal pathogenesis: Drug tolerance, virulence, and potential for antifungal therapy
    • Shingu-Vazquez M, Traven A. 2011. Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot. Cell 10:1376-1383.
    • (2011) Eukaryot. Cell , vol.10 , pp. 1376-1383
    • Shingu-Vazquez, M.1    Traven, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.