메뉴 건너뛰기




Volumn 53, Issue 1, 2012, Pages 226-233

Preprocessing unbalanced data using support vector machine

Author keywords

COIL data; Hybrid method; Preprocessor; SVM; Unbalanced data

Indexed keywords

BALANCING TECHNIQUES; CLASS IMBALANCE PROBLEMS; CLASSIFICATION ALGORITHM; COIL DATA; COMPUTATIONAL INTELLIGENCE TECHNIQUES; HYBRID METHOD; LOGISTIC REGRESSIONS; MULTI LAYER PERCEPTRON; OVER SAMPLING; RANDOM FORESTS; SOCIODEMOGRAPHIC DATA; SUPPORT VECTOR MACHINE (SVM); SVM; SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUES; TARGET VALUES; TRAINING DATA; UNBALANCED DATA; UNDER-SAMPLING;

EID: 84859213527     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2012.01.016     Document Type: Article
Times cited : (150)

References (55)
  • 1
    • 77949806919 scopus 로고    scopus 로고
    • Colon cancer prediction with genetic profiles using intelligent techniques
    • S.M. Alladi, S.P. Santosh, V. Ravi, and U.S. Murthy Colon cancer prediction with genetic profiles using intelligent techniques Bioinformation 3 3 2008 130 133
    • (2008) Bioinformation , vol.3 , Issue.3 , pp. 130-133
    • Alladi, S.M.1    Santosh, S.P.2    Ravi, V.3    Murthy, U.S.4
  • 6
    • 70449568735 scopus 로고    scopus 로고
    • Hybrid models using unsupervised clustering for prediction of customer churn
    • I. Bose, and X. Chen Hybrid models using unsupervised clustering for prediction of customer churn Journal of Organizational Computing and Electronic Commerce 19 2 2009 133 151
    • (2009) Journal of Organizational Computing and Electronic Commerce , vol.19 , Issue.2 , pp. 133-151
    • Bose, I.1    Chen, X.2
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
  • 13
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced data sets Computational Intelligence 20 1 2004 18 36
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 16
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett An introduction to ROC analysis Pattern Recognition Letters 27 2006 861 874
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 18
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The data boosting approach
    • H. Guo, and H.L. Viktor Learning from imbalanced data sets with boosting and data generation: the data boosting approach SIGKDD Explorations 6 1 2004 30 39
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 20
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V.N. Vapnik Gene selection for cancer classification using support vector machines Machine Learning 46 1-3 2002 389 422
    • (2002) Machine Learning , vol.46 , Issue.13 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 23
    • 67349097789 scopus 로고    scopus 로고
    • Designing an expert system for fraud detection in private telecommunications networks
    • C.S. Hilas Designing an expert system for fraud detection in private telecommunications networks Expert Systems with Applications 36 9 2009 11559 11569
    • (2009) Expert Systems with Applications , vol.36 , Issue.9 , pp. 11559-11569
    • Hilas, C.S.1
  • 24
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Z. Huang, H. Chen, C.-J. Hsu, W.-H. Chen, and S. Wu Credit rating analysis with support vector machines and neural networks: a market comparative study Decision Support Systems 37 4 2004 543 558
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.-J.3    Chen, W.-H.4    Wu, S.5
  • 26
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz, and S. Stephen The class imbalance problem: a systematic study Intelligent Data Analysis 6 5 2002 429 450
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 27
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • T. Jo, and N. Japkowicz Class imbalances versus small disjuncts SIGKDD Explorations 6 1 2004 40 49
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 28
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • K.J. Kim Financial time series forecasting using support vector machines Neurocomputing 55 1/2 2003 307 319
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 307-319
    • Kim, K.J.1
  • 29
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • I. Kononenko Machine learning for medical diagnosis: history, state of the art and perspective Artificial Intelligence in Medicine 23 1 2001 89 109
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 32
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. Holte, and S. Matwin Machine learning for the detection of oil spills in satellite radar images Machine Learning 30 2-3 2004 195 215
    • (2004) Machine Learning , vol.30 , Issue.23 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 33
    • 84947425690 scopus 로고    scopus 로고
    • Improving identification of difficult small classes by balancing class distribution
    • J. Laurikkala Improving identification of difficult small classes by balancing class distribution Artificial Intelligence in Medicine 2101 2001 63 66
    • (2001) Artificial Intelligence in Medicine , vol.2101 , pp. 63-66
    • Laurikkala, J.1
  • 36
    • 33746529930 scopus 로고    scopus 로고
    • A study in machine learning from imbalanced data for sentence boundary detection in speech
    • Y. Liu, N.V. Chawla, M.P. Harper, E. Shrilberg, and A. Stolcke A study in machine learning from imbalanced data for sentence boundary detection in speech Computer Speech and Language 20 4 2006 468 494
    • (2006) Computer Speech and Language , vol.20 , Issue.4 , pp. 468-494
    • Liu, Y.1    Chawla, N.V.2    Harper, M.P.3    Shrilberg, E.4    Stolcke, A.5
  • 38
    • 58749104155 scopus 로고    scopus 로고
    • Classification algorithm sensitivity to training data with non representative attribute noise
    • M. Mannino, Y. Yang, and Y. Rhu Classification algorithm sensitivity to training data with non representative attribute noise Decision Support Systems 46 3 2009 743 751
    • (2009) Decision Support Systems , vol.46 , Issue.3 , pp. 743-751
    • Mannino, M.1    Yang, Y.2    Rhu, Y.3
  • 40
    • 78650176118 scopus 로고    scopus 로고
    • Detection of financial statement fraud and feature selection using data mining techniques
    • P. Ravisankar, V. Ravi, G.R. Rao, and I. Bose Detection of financial statement fraud and feature selection using data mining techniques Decision Support Systems 50 2 2011 491 500
    • (2011) Decision Support Systems , vol.50 , Issue.2 , pp. 491-500
    • Ravisankar, P.1    Ravi, V.2    Rao, G.R.3    Bose, I.4
  • 42
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani Machine learning in automated text categorization ACM Computing Surveys 34 1 2002 1 47
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 43
    • 0032664993 scopus 로고    scopus 로고
    • Improving the manufacturability of electronic designs
    • D. Stoneking Improving the manufacturability of electronic designs IEEE Spectrum 36 6 1999 70 76
    • (1999) IEEE Spectrum , vol.36 , Issue.6 , pp. 70-76
    • Stoneking, D.1
  • 44
    • 70350565063 scopus 로고    scopus 로고
    • On strategies for imbalanced text classification using SVM: A comparative study
    • A. Sun, E.-P. Lim, and Y. Liu On strategies for imbalanced text classification using SVM: a comparative study Decision Support Systems 48 1 2009 191 201
    • (2009) Decision Support Systems , vol.48 , Issue.1 , pp. 191-201
    • Sun, A.1    Lim, E.-P.2    Liu, Y.3
  • 45
    • 0002100005 scopus 로고    scopus 로고
    • Retrieved on October 10, 2011, from
    • B.G. Tabachnick, and L.S. Fidell Logistic regression Retrieved on October 10, 2011, from http://userwww.sfsu.edu/~efc/classes/biol710/logistic/ logisticreg.htm 1996
    • (1996) Logistic Regression
    • Tabachnick, B.G.1    Fidell, L.S.2
  • 51
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • G.M. Weiss Mining with rarity: a unifying framework SIGKDD Explorations 6 1 2004 7 19
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 55
    • 77955712298 scopus 로고    scopus 로고
    • Web user behavioral profiling for user identification
    • C. Yang Web user behavioral profiling for user identification Decision Support Systems 49 3 2010 261 271
    • (2010) Decision Support Systems , vol.49 , Issue.3 , pp. 261-271
    • Yang, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.