메뉴 건너뛰기




Volumn 47, Issue 4, 2011, Pages 617-631

Combining integrated sampling with SVM ensembles for learning from imbalanced datasets

Author keywords

Classification; Data sampling; Imbalanced data mining

Indexed keywords

CLASSIFICATION; CLASSIFICATION METHODS; DATA SAMPLING; DATA SETS; DECISION BOUNDARY; EMPIRICAL ANALYSIS; IMBALANCED DATA; IMBALANCED DATA-SETS; INHERENT STRUCTURES; OVER SAMPLING; PREDICTION PERFORMANCE; REAL APPLICATIONS; SAMPLING TECHNIQUE; UNDER-SAMPLING;

EID: 79957591079     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2010.11.007     Document Type: Article
Times cited : (135)

References (31)
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 2 1998 121 167 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 3
    • 85083464467 scopus 로고    scopus 로고
    • Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection
    • P.K. Chan, and S.J. Stolfo Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection Knowledge Discovery and Data Mining 1998 164 168
    • (1998) Knowledge Discovery and Data Mining , pp. 164-168
    • Chan, P.K.1    Stolfo, S.J.2
  • 5
    • 9444297357 scopus 로고    scopus 로고
    • SMOTEBoost: Improving Prediction of the Minority Class in Boosting
    • Knowledge Discovery in Databases: PKDD 2003
    • Chawla, N. V.; Lazarevic, A.; Hall, L. O.; & Bowyer, K. W. (2003). Smoteboost: Improving prediction of the minority class in boosting. In PKDD (pp. 107-119). (Pubitemid 37231089)
    • (2003) PKDD , Issue.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 6
    • 20444392475 scopus 로고    scopus 로고
    • Using random forest to learn imbalanced data
    • Statistics Department, University of California at Berkeley
    • C. Chen, A. Liaw, and L. Breiman Using random forest to learn imbalanced data Technical report 666 2004 Statistics Department, University of California at Berkeley
    • (2004) Technical Report 666
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 7
    • 60249087645 scopus 로고    scopus 로고
    • Mining the customer credit using hybrid support vector machine technique
    • W. Chen, C. Ma, and L. Ma Mining the customer credit using hybrid support vector machine technique Expert Systems with Applications 36 4 2009 7611 7616
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7611-7616
    • Chen, W.1    Ma, C.2    Ma, L.3
  • 11
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • Frank, A.; & Asuncion, A. (2010). UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. Available from < http://archive.ics.uci.edu/ml >.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 14
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The databoost-im approach
    • H. Guo, and H.L. Viktor Learning from imbalanced data sets with boosting and data generation: The databoost-im approach SIGKDD Explorations 6 1 2004 30 39
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 17
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz, and S. Stephen The class imbalance problem: A systematic study Intelligent Data Analysis 6 5 2002 :429 449
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 18
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R.C. Holte, and S. Matwin Machine learning for the detection of oil spills in satellite radar images Machine Learning 30 2-3 1998 195 215
    • (1998) Machine Learning , vol.30 , Issue.23 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 20
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions
    • Ling, C. X.; & Li, C. (1998). Data mining for direct marketing: Problems and solutions. In: KDD (pp. 73-79).
    • (1998) KDD , pp. 73-79
    • Ling, C.X.1    Li, C.2
  • 22
    • 0029718295 scopus 로고    scopus 로고
    • A large-scale evaluation of features for automatic detection of oil spills in ers sar images
    • Solberg, A.; & Solberg, R. (1996). A large-scale evaluation of features for automatic detection of oil spills in ers sar images. In International geoscience and remote sensing symposium (pp. 1484-1486).
    • (1996) International Geoscience and Remote Sensing Symposium , pp. 1484-1486
    • Solberg, A.1    Solberg, R.2
  • 23
    • 39649105441 scopus 로고    scopus 로고
    • Author identification: Using text sampling to handle the class imbalance problem
    • DOI 10.1016/j.ipm.2007.05.012, PII S0306457307001197
    • E. Stamatatos Author identification: Using text sampling to handle the class imbalance problem Information Processing & Management 44 2 2008 790 799 (Pubitemid 351288480)
    • (2008) Information Processing and Management , vol.44 , Issue.2 , pp. 790-799
    • Stamatatos, E.1
  • 24
    • 70350565063 scopus 로고    scopus 로고
    • On strategies for imbalanced text classification using svm: A comparative study
    • A. Sun, E.-P. Lim, and Y. Liu On strategies for imbalanced text classification using svm: A comparative study Decision Support Systems 48 1 2009 191 201
    • (2009) Decision Support Systems , vol.48 , Issue.1 , pp. 191-201
    • Sun, A.1    Lim, E.-P.2    Liu, Y.3
  • 25
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • J.A. Swets Measuring the accuracy of diagnostic systems Science 240 4857 1988 1285 1293
    • (1988) Science , vol.240 , Issue.4857 , pp. 1285-1293
    • Swets, J.A.1
  • 27
    • 44949084506 scopus 로고    scopus 로고
    • Classification of weld flaws with imbalanced class data
    • T. Warren Liao Classification of weld flaws with imbalanced class data Expert Systems with Applications 35 3 2008 1041 1052
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 1041-1052
    • Warren Liao, T.1
  • 28
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G.M. Weiss, and F.J. Provost Learning when training data are costly: The effect of class distribution on tree induction Journal of Artificial Intelligence Research 19 2003 315 354 (Pubitemid 41525924)
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 29
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • DOI 10.1023/A:1007626913721
    • D.R. Wilson, and T.R. Martinez Reduction techniques for instance-based learning algorithms Machine Learning 38 3 2000 257 286 (Pubitemid 30572450)
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Randall Wilson, D.1    Martinez, T.R.2
  • 31
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • DOI 10.1016/S0004-3702(02)00190-X, PII S000437020200190X
    • Z.-H. Zhou, J. Wu, and W. Tang Ensembling neural networks: Many could be better than all Artificial Intelligence 137 1-2 2002 239 263 (Pubitemid 34405220)
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.