메뉴 건너뛰기




Volumn 24, Issue 8, 2011, Pages 1203-1213

A multi-instance ensemble learning model based on concept lattice

Author keywords

Concept lattice; Content based image retrieval; Ensemble learning; Local target feature set; Multi instance learning

Indexed keywords

CONCEPT LATTICES; CONTENT BASED IMAGE RETRIEVAL; ENSEMBLE LEARNING; LOCAL TARGET FEATURE SET; MULTI-INSTANCE LEARNING;

EID: 80051469409     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2011.05.010     Document Type: Article
Times cited : (17)

References (24)
  • 1
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • T.G. Dietterich, R.H. Lathrop, and T. Lozano-Prez Solving the multiple-instance problem with axis-parallel rectangles Artificial Intelligence 89 1-2 1997 31 71
    • (1997) Artificial Intelligence , vol.89 , Issue.12 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Prez, T.3
  • 3
    • 0000398336 scopus 로고
    • Restructuring lattice theory: An approach based on hierarchies of concepts
    • I. Rival (Ed.) Reidel, Dordrecht
    • R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht, 1982, pp. 445-470.
    • (1982) Ordered Sets , pp. 445-470
    • Wille, R.1
  • 4
    • 34548217145 scopus 로고    scopus 로고
    • Variable threshold concept lattices
    • W.X. Zhang, J.M. Ma, and S.Q. Fan Variable threshold concept lattices Information Sciences 177 22 2007 4883 4892
    • (2007) Information Sciences , vol.177 , Issue.22 , pp. 4883-4892
    • Zhang, W.X.1    Ma, J.M.2    Fan, S.Q.3
  • 5
    • 33746923130 scopus 로고    scopus 로고
    • Collaborative recommending using formal concept analysis
    • P.D. Boucher-Ryan, and D. Bridge Collaborative recommending using formal concept analysis Knowledge-Based Systems 19 5 2006 309 315
    • (2006) Knowledge-Based Systems , vol.19 , Issue.5 , pp. 309-315
    • Boucher-Ryan, P.D.1    Bridge, D.2
  • 6
    • 56649106565 scopus 로고    scopus 로고
    • Real formal concept analysis based on grey-rough set theory
    • Q. Wu, and Z.T. Liu Real formal concept analysis based on grey-rough set theory Knowledge-Based Systems 22 1 2009 38 45
    • (2009) Knowledge-Based Systems , vol.22 , Issue.1 , pp. 38-45
    • Wu, Q.1    Liu, Z.T.2
  • 7
    • 44149088330 scopus 로고    scopus 로고
    • Relations of attribute reduction between object and property oriented concept lattices
    • X. Wang, and W.X. Zhang Relations of attribute reduction between object and property oriented concept lattices Knowledge-Based Systems 21 5 2008 398 403
    • (2008) Knowledge-Based Systems , vol.21 , Issue.5 , pp. 398-403
    • Wang, X.1    Zhang, W.X.2
  • 8
    • 34248183074 scopus 로고    scopus 로고
    • A note on variable threshold concept lattices: Threshold-based operators are reducible to classical concept-forming operators
    • R. Belohlavek A note on variable threshold concept lattices: threshold-based operators are reducible to classical concept-forming operators Information Sciences 177 15 2007 3186 3191
    • (2007) Information Sciences , vol.177 , Issue.15 , pp. 3186-3191
    • Belohlavek, R.1
  • 9
    • 0036462767 scopus 로고    scopus 로고
    • Interface of global and local semantics in a self-navigating system based on the concept lattice
    • Y.P. Gunji, Y. Kusunoki, and M. Aono Interface of global and local semantics in a self-navigating system based on the concept lattice Chaos, Solitons and Fractals 13 2 2002 261 284
    • (2002) Chaos, Solitons and Fractals , vol.13 , Issue.2 , pp. 261-284
    • Gunji, Y.P.1    Kusunoki, Y.2    Aono, M.3
  • 10
    • 0033522717 scopus 로고    scopus 로고
    • Learning by discovering concept hierarchies
    • B. Zupa, and M. Bohance Learning by discovering concept hierarchies Artificial Intelligence 109 1-2 1999 211 242
    • (1999) Artificial Intelligence , vol.109 , Issue.12 , pp. 211-242
    • Zupa, B.1    Bohance, M.2
  • 18
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Becker, S. Thrun, K. Obermayer, MIT Press Cambridge, MA
    • S. Andrews, I. Tsochantaridis, and T. Hofmann Support vector machines for multiple-instance learning S. Becker, S. Thrun, K. Obermayer, Advances in Neural Information Processing Systems 15 2003 MIT Press Cambridge, MA 561 568
    • (2003) Advances in Neural Information Processing Systems 15 , pp. 561-568
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 22
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 1996 123 140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 24
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining Boosting and Wagging
    • G.I. Webb MultiBoosting: a technique for combining Boosting and Wagging Machine Learning 40 2000 159 196
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.