-
1
-
-
36048995637
-
-
10.1016/S1369-7021(07)70304-8
-
G. Mobus and B. J. Inkson, Mater. Today 10, 12 (2007). 10.1016/S1369-7021(07)70304-8
-
(2007)
Mater. Today
, vol.10
, pp. 12
-
-
Mobus, G.1
Inkson, B.J.2
-
3
-
-
3442894420
-
-
10.1007/s11661-004-0142-4
-
A. J. Kubis, G. J. Shiflet, R. Hull, and D. N. Dunn, Metall. Mater. Trans. A 35 (7), 1935-1943 (2004). 10.1007/s11661-004-0142-4
-
(2004)
Metall. Mater. Trans. A
, vol.35
, Issue.7
, pp. 1935-1943
-
-
Kubis, A.J.1
Shiflet, G.J.2
Hull, R.3
Dunn, D.N.4
-
4
-
-
33745943781
-
-
10.1111/j.1551-2916.2006.00974.x
-
L. Holzer, B. Münch, M. Wegmann, and P. Gasser, J. Am. Ceram. Soc. 89 (8), 2577-2585 (2006). 10.1111/j.1551-2916.2006.00974.x
-
(2006)
J. Am. Ceram. Soc.
, vol.89
, Issue.8
, pp. 2577-2585
-
-
Holzer, L.1
Münch, B.2
Wegmann, M.3
Gasser, P.4
-
6
-
-
34248220069
-
-
10.1088/0957-4484/18/22/225501
-
X. Xu, Z. Saghi, R. Gay, and G. Möbus, Nanotechnology 81, 225501 (2007). 10.1088/0957-4484/18/22/225501
-
(2007)
Nanotechnology
, vol.81
, pp. 225501
-
-
Xu, X.1
Saghi, Z.2
Gay, R.3
Möbus, G.4
-
8
-
-
0034155297
-
-
10.1016/S0032-3861(00)00464-X
-
J. Feng L. T. Weng, C. M. Chan, J. Xhie, and L. Li, Polymer 42, 2259-2262 (2001). 10.1016/S0032-3861(00)00464-X
-
(2001)
Polymer
, vol.42
, pp. 2259-2262
-
-
Feng, J.1
Weng, L.T.2
Chan, C.M.3
Xhie, J.4
Li, L.5
-
10
-
-
84858823633
-
-
10.1088/0957-4484/23/14/145704
-
G. J. Verbiest, J. N. Simon, T. H. Oosterkamp, and M. J. Rost, Nanotechnology 23, 145704 (2012). 10.1088/0957-4484/23/14/145704
-
(2012)
Nanotechnology
, vol.23
, pp. 145704
-
-
Verbiest, G.J.1
Simon, J.N.2
Oosterkamp, T.H.3
Rost, M.J.4
-
11
-
-
0000988849
-
-
10.1021/nl0100724
-
M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L. P. Kouwenhoven, M. W. Wu, and L. L. Sohn, Nano Lett. 2 (3), 4 (2002). 10.1021/nl0100724
-
(2002)
Nano Lett.
, vol.2
, Issue.3
, pp. 4
-
-
Bockrath, M.1
Markovic, N.2
Shepard, A.3
Tinkham, M.4
Gurevich, L.5
Kouwenhoven, L.P.6
Wu, M.W.7
Sohn, L.L.8
-
12
-
-
79957453666
-
-
10.1063/1.3585670
-
K. A. Brown, J. Berezovsky, and R. M. Westervelt, Appl. Phys. Lett. 98 (18), 183103 (2011). 10.1063/1.3585670
-
(2011)
Appl. Phys. Lett.
, vol.98
, Issue.18
, pp. 183103
-
-
Brown, K.A.1
Berezovsky, J.2
Westervelt, R.M.3
-
13
-
-
84866363146
-
-
10.1038/nmat3369
-
L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J. L. Carrascosa, and G. Gomila, Nature Mater. 11 (9), 808 (2012). 10.1038/nmat3369
-
(2012)
Nature Mater.
, vol.11
, Issue.9
, pp. 808
-
-
Fumagalli, L.1
Esteban-Ferrer, D.2
Cuervo, A.3
Carrascosa, J.L.4
Gomila, G.5
-
15
-
-
77952360644
-
-
10.1088/0957-4484/21/22/225702
-
M. Zhao, X. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, Nanotechnology 21, 225702 (2010). 10.1088/0957-4484/21/22/225702
-
(2010)
Nanotechnology
, vol.21
, pp. 225702
-
-
Zhao, M.1
Gu, X.2
Lowther, S.E.3
Park, C.4
Jean, Y.C.5
Nguyen, T.6
-
16
-
-
79960477655
-
-
10.1063/1.3608161
-
C. Riedel, A. Alegría, G. A. Schwartz, R. Arinero, J. Colmenero, and J. J. Sáenz, Appl. Phys. Lett. 99, 023101 (2011). 10.1063/1.3608161
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 023101
-
-
Riedel, C.1
Alegría, A.2
Schwartz, G.A.3
Arinero, R.4
Colmenero, J.5
Sáenz, J.J.6
-
17
-
-
79961076409
-
-
10.1088/0957-4484/22/34/345702
-
C. Riedel, A. Alegria, R. Arinero, J. Colmenero, and J. J. Saenz, Nanotechnology 22, 345702 (2011). 10.1088/0957-4484/22/34/345702
-
(2011)
Nanotechnology
, vol.22
, pp. 345702
-
-
Riedel, C.1
Alegria, A.2
Arinero, R.3
Colmenero, J.4
Saenz, J.J.5
-
18
-
-
84879379381
-
-
10.1557/opl.2012.53
-
C. Riedel, R. Arinero, A. Alegría, J. Colmenero, and J. J. Sáenz, Mater. Res. Soc. Symp. Proc. 1421, 5-9 (2012). 10.1557/opl.2012.53
-
(2012)
Mater. Res. Soc. Symp. Proc.
, vol.1421
, pp. 5-9
-
-
Riedel, C.1
Arinero, R.2
Alegría, A.3
Colmenero, J.4
Sáenz, J.J.5
-
20
-
-
84871254303
-
-
EFM commercial probes have tips with a conductive coating. The most popular have Pt/Ir or Co/Cr coated tips with typical radii comprised between 25 and 50 nm (Bruker™ SCM-PIT and MESP). Some other probes have conductive diamond coated tips (Nanosensors™ CDT-FMR) have radii of 100-200 nm. This kind of probes is useful for studies that require wear resistant tips and tolerate a slight loss of resolution
-
EFM commercial probes have tips with a conductive coating. The most popular have Pt/Ir or Co/Cr coated tips with typical radii comprised between 25 and 50 nm (Bruker™ SCM-PIT and MESP). Some other probes have conductive diamond coated tips (Nanosensors™ CDT-FMR) have radii of 100-200 nm. This kind of probes is useful for studies that require wear resistant tips and tolerate a slight loss of resolution.
-
-
-
-
21
-
-
0036714604
-
-
10.1109/TED.2002.802617
-
Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron Devices 9, 1606-1613 (2002). 10.1109/TED.2002.802617
-
(2002)
IEEE Trans. Electron Devices
, vol.9
, pp. 1606-1613
-
-
Liu, Z.1
Lee, C.2
Narayanan, V.3
Pei, G.4
Kan, E.C.5
|