-
1
-
-
2942627626
-
Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses
-
Seong S.Y., Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004, 4:469-478.
-
(2004)
Nat. Rev. Immunol.
, vol.4
, pp. 469-478
-
-
Seong, S.Y.1
Matzinger, P.2
-
2
-
-
79953066407
-
HMGB1 is a therapeutic target for sterile inflammation and infection
-
Andersson U., Tracey K.J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 2011, 29:139-162.
-
(2011)
Annu. Rev. Immunol.
, vol.29
, pp. 139-162
-
-
Andersson, U.1
Tracey, K.J.2
-
3
-
-
65149097030
-
Interleukin-33 - cytokine of dual function or novel alarmin?
-
Haraldsen G., et al. Interleukin-33 - cytokine of dual function or novel alarmin?. Trends Immunol. 2009, 30:227-233.
-
(2009)
Trends Immunol.
, vol.30
, pp. 227-233
-
-
Haraldsen, G.1
-
4
-
-
77950366886
-
Decoding cell death signals in inflammation and immunity
-
Zitvogel L., et al. Decoding cell death signals in inflammation and immunity. Cell 2010, 140:798-804.
-
(2010)
Cell
, vol.140
, pp. 798-804
-
-
Zitvogel, L.1
-
5
-
-
33750465224
-
Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages
-
Kawane K., et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 2006, 443:998-1002.
-
(2006)
Nature
, vol.443
, pp. 998-1002
-
-
Kawane, K.1
-
6
-
-
77951971046
-
The role of defective clearance of apoptotic cells in systemic autoimmunity
-
Munoz L.E., et al. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol. 2010, 6:280-289.
-
(2010)
Nat. Rev. Rheumatol.
, vol.6
, pp. 280-289
-
-
Munoz, L.E.1
-
7
-
-
0034114882
-
Features of systemic lupus erythematosus in Dnase1-deficient mice
-
Napirei M., et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet. 2000, 25:177-181.
-
(2000)
Nat. Genet.
, vol.25
, pp. 177-181
-
-
Napirei, M.1
-
8
-
-
70149084792
-
HMGB1 loves company
-
Bianchi M.E. HMGB1 loves company. J. Leukoc. Biol. 2009, 86:573-576.
-
(2009)
J. Leukoc. Biol.
, vol.86
, pp. 573-576
-
-
Bianchi, M.E.1
-
9
-
-
38349176286
-
RAGE as a receptor of HMGB1 (Amphoterin): roles in health and disease
-
Rauvala H., Rouhiainen A. RAGE as a receptor of HMGB1 (Amphoterin): roles in health and disease. Curr. Mol. Med. 2007, 7:725-734.
-
(2007)
Curr. Mol. Med.
, vol.7
, pp. 725-734
-
-
Rauvala, H.1
Rouhiainen, A.2
-
10
-
-
77952298772
-
HMGB1 and RAGE in inflammation and cancer
-
Sims G.P., et al. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 2010, 28:367-388.
-
(2010)
Annu. Rev. Immunol.
, vol.28
, pp. 367-388
-
-
Sims, G.P.1
-
11
-
-
79151471271
-
High-mobility group box 1 (HMGB1) as a master regulator of innate immunity
-
Castiglioni A., et al. High-mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res. 2011, 343:189-199.
-
(2011)
Cell Tissue Res.
, vol.343
, pp. 189-199
-
-
Castiglioni, A.1
-
12
-
-
0035882102
-
New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal
-
Muller S., et al. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 2001, 20:4337-4340.
-
(2001)
EMBO J.
, vol.20
, pp. 4337-4340
-
-
Muller, S.1
-
13
-
-
33845648944
-
The evolution of high mobility group box (HMGB) chromatin proteins in multicellular animals
-
Sessa L., Bianchi M.E. The evolution of high mobility group box (HMGB) chromatin proteins in multicellular animals. Gene 2007, 387:133-140.
-
(2007)
Gene
, vol.387
, pp. 133-140
-
-
Sessa, L.1
Bianchi, M.E.2
-
14
-
-
0033052037
-
The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice
-
Calogero S., et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 1999, 22:276-280.
-
(1999)
Nat. Genet.
, vol.22
, pp. 276-280
-
-
Calogero, S.1
-
15
-
-
0035036205
-
Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2
-
Ronfani L., et al. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development 2001, 128:1265-1273.
-
(2001)
Development
, vol.128
, pp. 1265-1273
-
-
Ronfani, L.1
-
16
-
-
0032522232
-
Hmg4, a new member of the Hmg1/2 gene family
-
Vaccari T., et al. Hmg4, a new member of the Hmg1/2 gene family. Genomics 1998, 49:247-252.
-
(1998)
Genomics
, vol.49
, pp. 247-252
-
-
Vaccari, T.1
-
17
-
-
17144376810
-
High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal
-
Lotze M.T., Tracey K.J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 2005, 5:331-342.
-
(2005)
Nat. Rev. Immunol.
, vol.5
, pp. 331-342
-
-
Lotze, M.T.1
Tracey, K.J.2
-
18
-
-
0025994836
-
30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane
-
Merenmies J., et al. 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J. Biol. Chem. 1991, 266:16722-16729.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 16722-16729
-
-
Merenmies, J.1
-
19
-
-
0033538467
-
HMG-1 as a late mediator of endotoxin lethality in mice
-
Wang H., et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285:248-251.
-
(1999)
Science
, vol.285
, pp. 248-251
-
-
Wang, H.1
-
20
-
-
0037062934
-
Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
-
Scaffidi P., et al. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418:191-195.
-
(2002)
Nature
, vol.418
, pp. 191-195
-
-
Scaffidi, P.1
-
21
-
-
79951910694
-
Autophagy in immunity and cell-autonomous defense against intracellular microbes
-
Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 2011, 240:92-104.
-
(2011)
Immunol. Rev.
, vol.240
, pp. 92-104
-
-
Deretic, V.1
-
22
-
-
85046981421
-
Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma
-
Huang J., et al. Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy 2012, 8:275-277.
-
(2012)
Autophagy
, vol.8
, pp. 275-277
-
-
Huang, J.1
-
23
-
-
77956386515
-
Endogenous HMGB1 regulates autophagy
-
Tang D., et al. Endogenous HMGB1 regulates autophagy. J. Cell. Biol. 2010, 190:881-892.
-
(2010)
J. Cell. Biol.
, vol.190
, pp. 881-892
-
-
Tang, D.1
-
24
-
-
34249812086
-
Masquerader: high mobility group box-1 and cancer
-
Ellerman J.E., et al. Masquerader: high mobility group box-1 and cancer. Clin. Cancer Res. 2007, 13:2836-2848.
-
(2007)
Clin. Cancer Res.
, vol.13
, pp. 2836-2848
-
-
Ellerman, J.E.1
-
25
-
-
0142137129
-
Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion
-
Bonaldi T., et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003, 22:5551-5560.
-
(2003)
EMBO J.
, vol.22
, pp. 5551-5560
-
-
Bonaldi, T.1
-
26
-
-
33847775295
-
Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1
-
Tang D., et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 2007, 81:741-747.
-
(2007)
J. Leukoc. Biol.
, vol.81
, pp. 741-747
-
-
Tang, D.1
-
27
-
-
77958125448
-
Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia
-
Lamkanfi M., et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 2010, 185:4385-4392.
-
(2010)
J. Immunol.
, vol.185
, pp. 4385-4392
-
-
Lamkanfi, M.1
-
28
-
-
68149100523
-
NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways
-
Willingham S.B., et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J. Immunol. 2009, 183:2008-2015.
-
(2009)
J. Immunol.
, vol.183
, pp. 2008-2015
-
-
Willingham, S.B.1
-
29
-
-
49049090421
-
Systemic release of high mobility group box 1 protein during severe murine influenza
-
Alleva L.M., et al. Systemic release of high mobility group box 1 protein during severe murine influenza. J. Immunol. 2008, 181:1454-1459.
-
(2008)
J. Immunol.
, vol.181
, pp. 1454-1459
-
-
Alleva, L.M.1
-
30
-
-
46749136790
-
Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein
-
Kazama H., et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 2008, 29:21-32.
-
(2008)
Immunity
, vol.29
, pp. 21-32
-
-
Kazama, H.1
-
31
-
-
84866378556
-
Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release
-
Venereau E., et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 2012, 209:1519-1528.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1519-1528
-
-
Venereau, E.1
-
32
-
-
84860862890
-
Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1)
-
Yang H., et al. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol. Med. 2012, 18:250-259.
-
(2012)
Mol. Med.
, vol.18
, pp. 250-259
-
-
Yang, H.1
-
33
-
-
63149171602
-
CD24 and Siglec-10 selectively repress tissue damage-induced immune responses
-
Chen G.Y., et al. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 2009, 323:1722-1725.
-
(2009)
Science
, vol.323
, pp. 1722-1725
-
-
Chen, G.Y.1
-
34
-
-
0842266582
-
Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation
-
Palumbo R., et al. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J. Cell. Biol. 2004, 164:441-449.
-
(2004)
J. Cell. Biol.
, vol.164
, pp. 441-449
-
-
Palumbo, R.1
-
35
-
-
0141750710
-
High mobility group 1 B-box mediates activation of human endothelium
-
Treutiger C.J., et al. High mobility group 1 B-box mediates activation of human endothelium. J. Intern. Med. 2003, 254:375-385.
-
(2003)
J. Intern. Med.
, vol.254
, pp. 375-385
-
-
Treutiger, C.J.1
-
36
-
-
34248228729
-
Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling
-
Fan J., et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J. Immunol. 2007, 178:6573-6580.
-
(2007)
J. Immunol.
, vol.178
, pp. 6573-6580
-
-
Fan, J.1
-
37
-
-
0034698830
-
High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes
-
Andersson U., et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 2000, 192:565-570.
-
(2000)
J. Exp. Med.
, vol.192
, pp. 565-570
-
-
Andersson, U.1
-
38
-
-
0035911959
-
The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells
-
Degryse B., et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J. Cell Biol. 2001, 152:1197-1206.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 1197-1206
-
-
Degryse, B.1
-
39
-
-
20944436774
-
The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism
-
Abeyama K., et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J. Clin. Invest. 2005, 115:1267-1274.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1267-1274
-
-
Abeyama, K.1
-
40
-
-
53449087278
-
Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes
-
Ito T., et al. Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler. Thromb. Vasc. Biol. 2008, 28:1825-1830.
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, pp. 1825-1830
-
-
Ito, T.1
-
41
-
-
33845885124
-
High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin
-
Yang D., et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J. Leukoc. Biol. 2007, 81:59-66.
-
(2007)
J. Leukoc. Biol.
, vol.81
, pp. 59-66
-
-
Yang, D.1
-
42
-
-
20644449041
-
HMGB1: guiding immunity from within
-
Dumitriu I.E., et al. HMGB1: guiding immunity from within. Trends Immunol. 2005, 26:381-387.
-
(2005)
Trends Immunol.
, vol.26
, pp. 381-387
-
-
Dumitriu, I.E.1
-
43
-
-
84863599924
-
Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma
-
Jube S., et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012, 72:3290-3301.
-
(2012)
Cancer Res.
, vol.72
, pp. 3290-3301
-
-
Jube, S.1
-
44
-
-
74549175673
-
High-mobility group box 1 and cancer
-
Tang D., et al. High-mobility group box 1 and cancer. Biochim. Biophys. Acta 2010, 1799:131-140.
-
(2010)
Biochim. Biophys. Acta
, vol.1799
, pp. 131-140
-
-
Tang, D.1
-
45
-
-
70749121242
-
High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1
-
Pusterla T., et al. High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1. Autoimmunity 2009, 42:308-310.
-
(2009)
Autoimmunity
, vol.42
, pp. 308-310
-
-
Pusterla, T.1
-
46
-
-
33845893860
-
Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin)
-
Rouhiainen A., et al. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukoc. Biol. 2007, 81:49-58.
-
(2007)
J. Leukoc. Biol.
, vol.81
, pp. 49-58
-
-
Rouhiainen, A.1
-
47
-
-
80052800427
-
Heat shock proteins and high mobility group box 1 protein lack cytokine function
-
Tsan M.F. Heat shock proteins and high mobility group box 1 protein lack cytokine function. J. Leukoc. Biol. 2011, 89:847-853.
-
(2011)
J. Leukoc. Biol.
, vol.89
, pp. 847-853
-
-
Tsan, M.F.1
-
48
-
-
77955403878
-
A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release
-
Yang H., et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11942-11947.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11942-11947
-
-
Yang, H.1
-
49
-
-
42149192003
-
HMGB1 develops enhanced proinflammatory activity by binding to cytokines
-
Sha Y., et al. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J. Immunol. 2008, 180:2531-2537.
-
(2008)
J. Immunol.
, vol.180
, pp. 2531-2537
-
-
Sha, Y.1
-
50
-
-
44449162626
-
High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-a production in human monocytes
-
Youn J.H., et al. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-a production in human monocytes. J. Immunol. 2008, 180:5067-5074.
-
(2008)
J. Immunol.
, vol.180
, pp. 5067-5074
-
-
Youn, J.H.1
-
51
-
-
34247236200
-
Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE
-
Tian J., et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 2007, 8:487-496.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 487-496
-
-
Tian, J.1
-
52
-
-
59649126956
-
Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE
-
Urbonaviciute V., et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 2008, 205:3007-3018.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 3007-3018
-
-
Urbonaviciute, V.1
-
53
-
-
70149092553
-
Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells
-
Campana L., et al. Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. J. Leukoc. Biol. 2009, 86:609-615.
-
(2009)
J. Leukoc. Biol.
, vol.86
, pp. 609-615
-
-
Campana, L.1
-
54
-
-
84860361435
-
HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4
-
Schiraldi M., et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med. 2012, 209:551-563.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 551-563
-
-
Schiraldi, M.1
-
55
-
-
84859074010
-
High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor
-
Hreggvidsdottir H.S., et al. High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol. Med. 2012, 18:224-230.
-
(2012)
Mol. Med.
, vol.18
, pp. 224-230
-
-
Hreggvidsdottir, H.S.1
-
56
-
-
77951260924
-
The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors
-
Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010, 11:373-384.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 373-384
-
-
Kawai, T.1
Akira, S.2
-
57
-
-
35349016235
-
Recognition of microorganisms and activation of the immune response
-
Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007, 449:819-826.
-
(2007)
Nature
, vol.449
, pp. 819-826
-
-
Medzhitov, R.1
-
58
-
-
58049217490
-
RNA recognition and signal transduction by RIG-I-like receptors
-
Yoneyama M., Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 2009, 227:54-65.
-
(2009)
Immunol. Rev.
, vol.227
, pp. 54-65
-
-
Yoneyama, M.1
Fujita, T.2
-
59
-
-
34250837518
-
A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA
-
Ivanov S., et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 2007, 110:1970-1981.
-
(2007)
Blood
, vol.110
, pp. 1970-1981
-
-
Ivanov, S.1
-
60
-
-
70349943834
-
STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
-
Ishikawa H., et al. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461:788-792.
-
(2009)
Nature
, vol.461
, pp. 788-792
-
-
Ishikawa, H.1
-
61
-
-
77950362382
-
The inflammasomes
-
Schroder K., Tschopp J. The inflammasomes. Cell 2010, 140:821-832.
-
(2010)
Cell
, vol.140
, pp. 821-832
-
-
Schroder, K.1
Tschopp, J.2
-
62
-
-
34547143110
-
DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
-
Takaoka A., et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007, 448:501-505.
-
(2007)
Nature
, vol.448
, pp. 501-505
-
-
Takaoka, A.1
-
63
-
-
77958140656
-
IFI16 is an innate immune sensor for intracellular DNA
-
Unterholzner L., et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 2010, 11:997-1004.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 997-1004
-
-
Unterholzner, L.1
-
64
-
-
80052969639
-
The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells
-
Zhang Z., et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 2011, 12:959-965.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 959-965
-
-
Zhang, Z.1
-
65
-
-
42649114059
-
The IRF family transcription factors in immunity and oncogenesis
-
Tamura T., et al. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 2008, 26:535-584.
-
(2008)
Annu. Rev. Immunol.
, vol.26
, pp. 535-584
-
-
Tamura, T.1
-
66
-
-
70449092388
-
HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses
-
Yanai H., et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 2009, 462:99-103.
-
(2009)
Nature
, vol.462
, pp. 99-103
-
-
Yanai, H.1
-
67
-
-
29244471275
-
A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA
-
Ishii K.J., et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 2006, 7:40-48.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 40-48
-
-
Ishii, K.J.1
-
68
-
-
0028931102
-
CpG motifs in bacterial DNA trigger direct B-cell activation
-
Krieg A.M., et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995, 374:546-549.
-
(1995)
Nature
, vol.374
, pp. 546-549
-
-
Krieg, A.M.1
-
69
-
-
40249088259
-
The DNA sugar backbone 2' deoxyribose determines toll-like receptor 9 activation
-
Haas T., et al. The DNA sugar backbone 2' deoxyribose determines toll-like receptor 9 activation. Immunity 2008, 28:315-323.
-
(2008)
Immunity
, vol.28
, pp. 315-323
-
-
Haas, T.1
-
70
-
-
84861166952
-
Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection
-
Matsumoto Y., et al. Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection. Cell Host Microbe 2012, 11:492-503.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 492-503
-
-
Matsumoto, Y.1
-
71
-
-
84866156202
-
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication
-
Moisy D., et al. HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J. Virol. 2012, 86:9122-9133.
-
(2012)
J. Virol.
, vol.86
, pp. 9122-9133
-
-
Moisy, D.1
-
72
-
-
77958114725
-
The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1
-
Yan N., et al. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 2010, 11:1005-1013.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 1005-1013
-
-
Yan, N.1
-
73
-
-
17144404177
-
IRF-7 is the master regulator of type-I interferon-dependent immune responses
-
Honda K., et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005, 434:772-777.
-
(2005)
Nature
, vol.434
, pp. 772-777
-
-
Honda, K.1
-
74
-
-
84865422909
-
Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1
-
Chiba S., et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 2012, 13:832-842.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 832-842
-
-
Chiba, S.1
-
75
-
-
79951670558
-
Nucleic acid sensing Toll-like receptors in autoimmunity
-
Ewald S.E., Barton G.M. Nucleic acid sensing Toll-like receptors in autoimmunity. Curr. Opin. Immunol. 2011, 23:3-9.
-
(2011)
Curr. Opin. Immunol.
, vol.23
, pp. 3-9
-
-
Ewald, S.E.1
Barton, G.M.2
-
76
-
-
80052184362
-
Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity
-
Kawasaki T., et al. Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol. Rev. 2011, 243:61-73.
-
(2011)
Immunol. Rev.
, vol.243
, pp. 61-73
-
-
Kawasaki, T.1
-
77
-
-
33745168605
-
Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication
-
Pisitkun P., et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006, 312:1669-1672.
-
(2006)
Science
, vol.312
, pp. 1669-1672
-
-
Pisitkun, P.1
-
78
-
-
30444450839
-
Recognition of cytosolic DNA activates an IRF3-dependent innate immune response
-
Stetson D.B., Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006, 24:93-103.
-
(2006)
Immunity
, vol.24
, pp. 93-103
-
-
Stetson, D.B.1
Medzhitov, R.2
-
79
-
-
79961013333
-
Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs)
-
Yanai H., et al. Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:11542-11547.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 11542-11547
-
-
Yanai, H.1
-
80
-
-
32444443739
-
Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis
-
Prinz M., et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. 2006, 116:456-464.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 456-464
-
-
Prinz, M.1
-
81
-
-
0034043957
-
CpG oligonucleotides are potent adjuvants for the activation of autoreactive encephalitogenic T cells in vivo
-
Segal B.M., et al. CpG oligonucleotides are potent adjuvants for the activation of autoreactive encephalitogenic T cells in vivo. J. Immunol. 2000, 164:5683-5688.
-
(2000)
J. Immunol.
, vol.164
, pp. 5683-5688
-
-
Segal, B.M.1
-
82
-
-
0038276946
-
Structural basis for the proinflammatory cytokine activity of high mobility group box 1
-
Li J., et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol. Med. 2003, 9:37-45.
-
(2003)
Mol. Med.
, vol.9
, pp. 37-45
-
-
Li, J.1
-
83
-
-
55149093640
-
Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms
-
Hu X., et al. Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol. Rev. 2008, 226:41-56.
-
(2008)
Immunol. Rev.
, vol.226
, pp. 41-56
-
-
Hu, X.1
-
84
-
-
0035344461
-
A weak signal for strong responses: interferon-alpha/beta revisited
-
Taniguchi T., Takaoka A. A weak signal for strong responses: interferon-alpha/beta revisited. Nat. Rev. Mol. Cell. Biol. 2001, 2:378-386.
-
(2001)
Nat. Rev. Mol. Cell. Biol.
, vol.2
, pp. 378-386
-
-
Taniguchi, T.1
Takaoka, A.2
-
85
-
-
9144241208
-
Reversing established sepsis with antagonists of endogenous high-mobility group box 1
-
Yang H., et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:296-301.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 296-301
-
-
Yang, H.1
-
86
-
-
37749005803
-
Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection
-
Lutterloh E.C., et al. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit. Care 2007, 11:R122.
-
(2007)
Crit. Care
, vol.11
-
-
Lutterloh, E.C.1
-
88
-
-
77949409236
-
High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation
-
Zhu S., et al. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm. Allergy Drug Targets 2010, 9:60-72.
-
(2010)
Inflamm. Allergy Drug Targets
, vol.9
, pp. 60-72
-
-
Zhu, S.1
|