-
1
-
-
12244265090
-
Gene selection: a Bayesian variable selection approach
-
10.1093/bioinformatics/19.1.90, 12499298
-
Lee KE, Sha N, Dougherty ER, Vannucci M, Mallick BK. Gene selection: a Bayesian variable selection approach. Bioinformatics 2003, 19:90-97. 10.1093/bioinformatics/19.1.90, 12499298.
-
(2003)
Bioinformatics
, vol.19
, pp. 90-97
-
-
Lee, K.E.1
Sha, N.2
Dougherty, E.R.3
Vannucci, M.4
Mallick, B.K.5
-
2
-
-
25144501141
-
A Bayesian regression approach to the inference of regulatory networks from gene expression data
-
10.1093/bioinformatics/bti487, 15879452
-
Rogers S, Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 2005, 21(14):3131-3137. 10.1093/bioinformatics/bti487, 15879452.
-
(2005)
Bioinformatics
, vol.21
, Issue.14
, pp. 3131-3137
-
-
Rogers, S.1
Girolami, M.2
-
3
-
-
46949103774
-
Bayesian variable selection and data integration for biological regulatory networks
-
Jensen ST, Chen G, Stoeckert CJ. Bayesian variable selection and data integration for biological regulatory networks. Ann Appl Stat 2007, 1:612-633.
-
(2007)
Ann Appl Stat
, vol.1
, pp. 612-633
-
-
Jensen, S.T.1
Chen, G.2
Stoeckert, C.J.3
-
4
-
-
58349111535
-
Sparse combinatorial inference with an application in cancer biology
-
10.1093/bioinformatics/btn611, 2639004, 19038985
-
Mukherjee S, et al. Sparse combinatorial inference with an application in cancer biology. Bioinformatics 2009, 25:265-271. 10.1093/bioinformatics/btn611, 2639004, 19038985.
-
(2009)
Bioinformatics
, vol.25
, pp. 265-271
-
-
Mukherjee, S.1
-
5
-
-
62549115747
-
Genome-wide association analysis by lasso penalized logistic regression
-
10.1093/bioinformatics/btp041, 2732298, 19176549
-
Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 2009, 25:714-721. 10.1093/bioinformatics/btp041, 2732298, 19176549.
-
(2009)
Bioinformatics
, vol.25
, pp. 714-721
-
-
Wu, T.T.1
Chen, Y.F.2
Hastie, T.3
Sobel, E.4
Lange, K.5
-
6
-
-
77950497193
-
Bayesian variable selection for disease classification using gene expression data
-
10.1093/bioinformatics/btp638, 19933163
-
Ai-Jun Y, Xin-Yuan S. Bayesian variable selection for disease classification using gene expression data. Bioinformatics 2010, 26:215-222. 10.1093/bioinformatics/btp638, 19933163.
-
(2010)
Bioinformatics
, vol.26
, pp. 215-222
-
-
Ai-Jun, Y.1
Xin-Yuan, S.2
-
7
-
-
0036020894
-
Bayes model averaging with selection of regressors
-
Brown PJ, Vannucci M, Fearn T. Bayes model averaging with selection of regressors. J R Stat Soc B 2002, 64:519-536.
-
(2002)
J R Stat Soc B
, vol.64
, pp. 519-536
-
-
Brown, P.J.1
Vannucci, M.2
Fearn, T.3
-
8
-
-
0031526204
-
Approaches for Bayesian variable selection
-
George EI, McCulloch RE. Approaches for Bayesian variable selection. Stat Sin 1997, 7:339-373.
-
(1997)
Stat Sin
, vol.7
, pp. 339-373
-
-
George, E.I.1
McCulloch, R.E.2
-
9
-
-
0042306266
-
The practical implementation of Bayesian model selection
-
Chipman H, et al. The practical implementation of Bayesian model selection. IMS Lecture Notes-Monograph Ser 2001, 38:65-134.
-
(2001)
IMS Lecture Notes-Monograph Ser
, vol.38
, pp. 65-134
-
-
Chipman, H.1
-
10
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
10.1126/science.1105809, 15845847
-
Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308:523-529. 10.1126/science.1105809, 15845847.
-
(2005)
Science
, vol.308
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
11
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan D, York J, Allard D. Bayesian graphical models for discrete data. Int Stat Rev 1995, 63:215-232.
-
(1995)
Int Stat Rev
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
Allard, D.3
-
12
-
-
0031506560
-
Bayesian model averaging for linear regression models
-
Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. J Am Stat Assoc 1997, 92:179-191.
-
(1997)
J Am Stat Assoc
, vol.92
, pp. 179-191
-
-
Raftery, A.E.1
Madigan, D.2
Hoeting, J.A.3
-
14
-
-
1842434516
-
Bayesian variable selection and the Swendsen-Wang algorithm
-
Nott DJ, Green PJ. Bayesian variable selection and the Swendsen-Wang algorithm. J Comput Graph Stat 2004, 13:141-157.
-
(2004)
J Comput Graph Stat
, vol.13
, pp. 141-157
-
-
Nott, D.J.1
Green, P.J.2
-
15
-
-
0000824232
-
Nonparametric regression using Bayesian variable selection
-
Smith M, Kohn R. Nonparametric regression using Bayesian variable selection. J Econometrics 1996, 75:317-343.
-
(1996)
J Econometrics
, vol.75
, pp. 317-343
-
-
Smith, M.1
Kohn, R.2
-
17
-
-
0010081155
-
Nonparametric regression using linear combinations of basis functions
-
Kohn R, Smith M, Chan D. Nonparametric regression using linear combinations of basis functions. Stat Comput 2001, 11:313-322.
-
(2001)
Stat Comput
, vol.11
, pp. 313-322
-
-
Kohn, R.1
Smith, M.2
Chan, D.3
-
19
-
-
78649419087
-
Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics
-
Li F, Zhang NR. Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J Am Stat Assoc 2010, 105:1202-1214.
-
(2010)
J Am Stat Assoc
, vol.105
, pp. 1202-1214
-
-
Li, F.1
Zhang, N.R.2
-
20
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B 1996, 58:267-288.
-
(1996)
J R Stat Soc B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
21
-
-
42649140560
-
Network-constrained regularization and variable selection for analysis of genomic data
-
10.1093/bioinformatics/btn081, 18310618
-
Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 2008, 24:1175-1182. 10.1093/bioinformatics/btn081, 18310618.
-
(2008)
Bioinformatics
, vol.24
, pp. 1175-1182
-
-
Li, C.1
Li, H.2
-
22
-
-
79951528449
-
Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data
-
10.1093/bioinformatics/btq690, 3105481, 21159623
-
Stingo FC, Vannucci M. Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Bioinformatics 2011, 27:495-501. 10.1093/bioinformatics/btq690, 3105481, 21159623.
-
(2011)
Bioinformatics
, vol.27
, pp. 495-501
-
-
Stingo, F.C.1
Vannucci, M.2
-
23
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Soft 2010, 33:1-22.
-
(2010)
J Stat Soft
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
25
-
-
0034614637
-
The hallmarks of cancer
-
10.1016/S0092-8674(00)81683-9, 10647931
-
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100:57-70. 10.1016/S0092-8674(00)81683-9, 10647931.
-
(2000)
Cell
, vol.100
, pp. 57-70
-
-
Hanahan, D.1
Weinberg, R.A.2
-
26
-
-
0035256698
-
Untangling the ErbB signalling network
-
10.1038/35052073, 11252954
-
Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001, 2:127-137. 10.1038/35052073, 11252954.
-
(2001)
Nat Rev Mol Cell Biol
, vol.2
, pp. 127-137
-
-
Yarden, Y.1
Sliwkowski, M.X.2
-
27
-
-
33845209913
-
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
-
10.1016/j.ccr.2006.10.008, 2730521, 17157791
-
Neve RM, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006, 10:515-527. 10.1016/j.ccr.2006.10.008, 2730521, 17157791.
-
(2006)
Cancer Cell
, vol.10
, pp. 515-527
-
-
Neve, R.M.1
-
28
-
-
84870703441
-
Subtype and pathway specific responses to anticancer compounds in breast cancer
-
in press
-
Heiser LM, et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proceedings of the National Academy of Sciences 2011,, in press.
-
(2011)
Proceedings of the National Academy of Sciences
-
-
Heiser, L.M.1
-
29
-
-
3042743988
-
Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt
-
10.1158/0008-5472.CAN-04-0343, 15231645
-
Yang L, et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004, 64:4394-4399. 10.1158/0008-5472.CAN-04-0343, 15231645.
-
(2004)
Cancer Res
, vol.64
, pp. 4394-4399
-
-
Yang, L.1
-
30
-
-
0029160069
-
Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction
-
Burgering BMT, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 2002, 376:599-602.
-
(2002)
Nature
, vol.376
, pp. 599-602
-
-
Burgering, B.M.T.1
Coffer, P.J.2
-
31
-
-
0035063183
-
The Rb/E2F pathway and cancer
-
10.1093/hmg/10.7.699, 11257102
-
Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet 2001, 10:699-703. 10.1093/hmg/10.7.699, 11257102.
-
(2001)
Hum Mol Genet
, vol.10
, pp. 699-703
-
-
Nevins, J.R.1
-
32
-
-
9744256274
-
Transcriptional Regulation of AKT Activation by E2F
-
10.1016/j.molcel.2004.11.003, 15574337
-
Chaussepied M, Ginsberg D. Transcriptional Regulation of AKT Activation by E2F. Mol Cell 2004, 16:831-837. 10.1016/j.molcel.2004.11.003, 15574337.
-
(2004)
Mol Cell
, vol.16
, pp. 831-837
-
-
Chaussepied, M.1
Ginsberg, D.2
-
33
-
-
0001729472
-
Calibration and empirical Bayes variable selection
-
George EI, Foster DP. Calibration and empirical Bayes variable selection. Biometrika 2000, 87:731-747.
-
(2000)
Biometrika
, vol.87
, pp. 731-747
-
-
George, E.I.1
Foster, D.P.2
-
34
-
-
29144459062
-
Efficient empirical Bayes variable selection and estimation in linear models
-
Yuan M, Lin Y. Efficient empirical Bayes variable selection and estimation in linear models. J Am Stat Assoc 2005, 100:1215-1225.
-
(2005)
J Am Stat Assoc
, vol.100
, pp. 1215-1225
-
-
Yuan, M.1
Lin, Y.2
-
35
-
-
42649117688
-
A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data
-
Wei Z, Li H. A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data. Ann Appl Stat 2008, 2:408-429.
-
(2008)
Ann Appl Stat
, vol.2
, pp. 408-429
-
-
Wei, Z.1
Li, H.2
-
36
-
-
84860440017
-
Bayesian methods for network-structured genomics data
-
New, York: Springer, Chen MH, Müller P, Sun D, Ye K, Dey DK
-
Li H, Monni S. Bayesian methods for network-structured genomics data. Frontiers of Statistical Decision Making and Bayesian Analysis 2010, 303-315. New, York: Springer, Chen MH, Müller P, Sun D, Ye K, Dey DK.
-
(2010)
Frontiers of Statistical Decision Making and Bayesian Analysis
, pp. 303-315
-
-
Li, H.1
Monni, S.2
-
37
-
-
61449157892
-
Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
-
Binder H, Schumacher M. Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinf 2009, 10:18.
-
(2009)
BMC Bioinf
, vol.10
, pp. 18
-
-
Binder, H.1
Schumacher, M.2
-
38
-
-
77955405900
-
Feature selection guided by structural information
-
Slawski M, zu Castell W, Tutz G. Feature selection guided by structural information. Ann Appl Stat 2010, 4:1056-1080.
-
(2010)
Ann Appl Stat
, vol.4
, pp. 1056-1080
-
-
Slawski, M.1
zu Castell, W.2
Tutz, G.3
-
39
-
-
60849121073
-
Network-based support vector machine for classification of microarray samples
-
Zhu Y, Shen X, Pan W. Network-based support vector machine for classification of microarray samples. BMC Bioinf 2009, 10:S21.
-
(2009)
BMC Bioinf
, vol.10
-
-
Zhu, Y.1
Shen, X.2
Pan, W.3
-
40
-
-
80054113423
-
Graph constrained discriminant analysis: A new method for the integration of a graph into a classification process
-
10.1371/journal.pone.0026146, 3195079, 22022543
-
Guillemot V, Tenenhaus A, Le Brusquet L, Frouin V. Graph constrained discriminant analysis: A new method for the integration of a graph into a classification process. PLoS ONE 2011, 6:e26146. 10.1371/journal.pone.0026146, 3195079, 22022543.
-
(2011)
PLoS ONE
, vol.6
-
-
Guillemot, V.1
Tenenhaus, A.2
Le Brusquet, L.3
Frouin, V.4
-
41
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Singapore: World Scientific
-
Hartemink AJ, Bernard A. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. Pac Symp Biocomput 2005 2005, 459-470. Singapore: World Scientific.
-
(2005)
Pac Symp Biocomput 2005
, pp. 459-470
-
-
Hartemink, A.J.1
Bernard, A.2
-
42
-
-
34249774309
-
Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
-
Werhli AV, Husmeier D. Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol 2007, 6:15.
-
(2007)
Stat Appl Genet Mol Biol
, vol.6
, pp. 15
-
-
Werhli, A.V.1
Husmeier, D.2
-
43
-
-
55749093996
-
Network inference using informative priors
-
10.1073/pnas.0802272105, 2567188, 18799736
-
Mukherjee S, Speed TP. Network inference using informative priors. Proc Natl Acad Sci USA 2008, 105:14313-14318. 10.1073/pnas.0802272105, 2567188, 18799736.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 14313-14318
-
-
Mukherjee, S.1
Speed, T.P.2
-
44
-
-
0030532505
-
Bayesian variable selection with related predictors
-
Chipman H. Bayesian variable selection with related predictors. Can J Stat 1996, 24:17-36.
-
(1996)
Can J Stat
, vol.24
, pp. 17-36
-
-
Chipman, H.1
-
45
-
-
50449090913
-
Bayesian variable selection for high dimensional generalized linear models: convergence rates of the fitted densities
-
Jiang W. Bayesian variable selection for high dimensional generalized linear models: convergence rates of the fitted densities. Ann Stat 2007, 35:1487-1511.
-
(2007)
Ann Stat
, vol.35
, pp. 1487-1511
-
-
Jiang, W.1
-
46
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
10.1093/bioinformatics/btg313, 14630656
-
Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19:2271-2282. 10.1093/bioinformatics/btg313, 14630656.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
|