메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages

Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN; BAYESIAN VARIABLE SELECTION; BIOCHEMICAL DATA; BIOLOGICAL INFORMATION; BIOLOGICAL RESPONSE; CANCER BIOLOGY; CANCER DRUG; EMPIRICAL BAYES; EMPIRICAL BAYES APPROACH; EMPIRICAL BAYES METHOD; EXACT INFERENCE; FREQUENTIST; INFORMATIVE PRIORS; INTERACTION TERM; MULTIPLE SOURCE; NETWORK MAPS; NETWORK-BASED; PRIOR INFORMATION; PRIOR KNOWLEDGE; RESPONSE DATA; SPARSITY CONSTRAINTS; STATISTICAL VARIABLES; VARIABLE SELECTION;

EID: 84860811237     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-13-94     Document Type: Article
Times cited : (19)

References (46)
  • 1
    • 12244265090 scopus 로고    scopus 로고
    • Gene selection: a Bayesian variable selection approach
    • 10.1093/bioinformatics/19.1.90, 12499298
    • Lee KE, Sha N, Dougherty ER, Vannucci M, Mallick BK. Gene selection: a Bayesian variable selection approach. Bioinformatics 2003, 19:90-97. 10.1093/bioinformatics/19.1.90, 12499298.
    • (2003) Bioinformatics , vol.19 , pp. 90-97
    • Lee, K.E.1    Sha, N.2    Dougherty, E.R.3    Vannucci, M.4    Mallick, B.K.5
  • 2
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • 10.1093/bioinformatics/bti487, 15879452
    • Rogers S, Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 2005, 21(14):3131-3137. 10.1093/bioinformatics/bti487, 15879452.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 3
    • 46949103774 scopus 로고    scopus 로고
    • Bayesian variable selection and data integration for biological regulatory networks
    • Jensen ST, Chen G, Stoeckert CJ. Bayesian variable selection and data integration for biological regulatory networks. Ann Appl Stat 2007, 1:612-633.
    • (2007) Ann Appl Stat , vol.1 , pp. 612-633
    • Jensen, S.T.1    Chen, G.2    Stoeckert, C.J.3
  • 4
    • 58349111535 scopus 로고    scopus 로고
    • Sparse combinatorial inference with an application in cancer biology
    • 10.1093/bioinformatics/btn611, 2639004, 19038985
    • Mukherjee S, et al. Sparse combinatorial inference with an application in cancer biology. Bioinformatics 2009, 25:265-271. 10.1093/bioinformatics/btn611, 2639004, 19038985.
    • (2009) Bioinformatics , vol.25 , pp. 265-271
    • Mukherjee, S.1
  • 5
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • 10.1093/bioinformatics/btp041, 2732298, 19176549
    • Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 2009, 25:714-721. 10.1093/bioinformatics/btp041, 2732298, 19176549.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.4    Lange, K.5
  • 6
    • 77950497193 scopus 로고    scopus 로고
    • Bayesian variable selection for disease classification using gene expression data
    • 10.1093/bioinformatics/btp638, 19933163
    • Ai-Jun Y, Xin-Yuan S. Bayesian variable selection for disease classification using gene expression data. Bioinformatics 2010, 26:215-222. 10.1093/bioinformatics/btp638, 19933163.
    • (2010) Bioinformatics , vol.26 , pp. 215-222
    • Ai-Jun, Y.1    Xin-Yuan, S.2
  • 7
    • 0036020894 scopus 로고    scopus 로고
    • Bayes model averaging with selection of regressors
    • Brown PJ, Vannucci M, Fearn T. Bayes model averaging with selection of regressors. J R Stat Soc B 2002, 64:519-536.
    • (2002) J R Stat Soc B , vol.64 , pp. 519-536
    • Brown, P.J.1    Vannucci, M.2    Fearn, T.3
  • 8
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George EI, McCulloch RE. Approaches for Bayesian variable selection. Stat Sin 1997, 7:339-373.
    • (1997) Stat Sin , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 9
    • 0042306266 scopus 로고    scopus 로고
    • The practical implementation of Bayesian model selection
    • Chipman H, et al. The practical implementation of Bayesian model selection. IMS Lecture Notes-Monograph Ser 2001, 38:65-134.
    • (2001) IMS Lecture Notes-Monograph Ser , vol.38 , pp. 65-134
    • Chipman, H.1
  • 10
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • 10.1126/science.1105809, 15845847
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308:523-529. 10.1126/science.1105809, 15845847.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 11
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D, York J, Allard D. Bayesian graphical models for discrete data. Int Stat Rev 1995, 63:215-232.
    • (1995) Int Stat Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2    Allard, D.3
  • 12
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. J Am Stat Assoc 1997, 92:179-191.
    • (1997) J Am Stat Assoc , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.2    Hoeting, J.A.3
  • 14
    • 1842434516 scopus 로고    scopus 로고
    • Bayesian variable selection and the Swendsen-Wang algorithm
    • Nott DJ, Green PJ. Bayesian variable selection and the Swendsen-Wang algorithm. J Comput Graph Stat 2004, 13:141-157.
    • (2004) J Comput Graph Stat , vol.13 , pp. 141-157
    • Nott, D.J.1    Green, P.J.2
  • 15
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith M, Kohn R. Nonparametric regression using Bayesian variable selection. J Econometrics 1996, 75:317-343.
    • (1996) J Econometrics , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 17
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • Kohn R, Smith M, Chan D. Nonparametric regression using linear combinations of basis functions. Stat Comput 2001, 11:313-322.
    • (2001) Stat Comput , vol.11 , pp. 313-322
    • Kohn, R.1    Smith, M.2    Chan, D.3
  • 19
    • 78649419087 scopus 로고    scopus 로고
    • Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics
    • Li F, Zhang NR. Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J Am Stat Assoc 2010, 105:1202-1214.
    • (2010) J Am Stat Assoc , vol.105 , pp. 1202-1214
    • Li, F.1    Zhang, N.R.2
  • 20
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B 1996, 58:267-288.
    • (1996) J R Stat Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • 10.1093/bioinformatics/btn081, 18310618
    • Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 2008, 24:1175-1182. 10.1093/bioinformatics/btn081, 18310618.
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 22
    • 79951528449 scopus 로고    scopus 로고
    • Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data
    • 10.1093/bioinformatics/btq690, 3105481, 21159623
    • Stingo FC, Vannucci M. Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Bioinformatics 2011, 27:495-501. 10.1093/bioinformatics/btq690, 3105481, 21159623.
    • (2011) Bioinformatics , vol.27 , pp. 495-501
    • Stingo, F.C.1    Vannucci, M.2
  • 23
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Soft 2010, 33:1-22.
    • (2010) J Stat Soft , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 25
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • 10.1016/S0092-8674(00)81683-9, 10647931
    • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100:57-70. 10.1016/S0092-8674(00)81683-9, 10647931.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 26
    • 0035256698 scopus 로고    scopus 로고
    • Untangling the ErbB signalling network
    • 10.1038/35052073, 11252954
    • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001, 2:127-137. 10.1038/35052073, 11252954.
    • (2001) Nat Rev Mol Cell Biol , vol.2 , pp. 127-137
    • Yarden, Y.1    Sliwkowski, M.X.2
  • 27
    • 33845209913 scopus 로고    scopus 로고
    • A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
    • 10.1016/j.ccr.2006.10.008, 2730521, 17157791
    • Neve RM, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006, 10:515-527. 10.1016/j.ccr.2006.10.008, 2730521, 17157791.
    • (2006) Cancer Cell , vol.10 , pp. 515-527
    • Neve, R.M.1
  • 28
    • 84870703441 scopus 로고    scopus 로고
    • Subtype and pathway specific responses to anticancer compounds in breast cancer
    • in press
    • Heiser LM, et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proceedings of the National Academy of Sciences 2011,, in press.
    • (2011) Proceedings of the National Academy of Sciences
    • Heiser, L.M.1
  • 29
    • 3042743988 scopus 로고    scopus 로고
    • Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt
    • 10.1158/0008-5472.CAN-04-0343, 15231645
    • Yang L, et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004, 64:4394-4399. 10.1158/0008-5472.CAN-04-0343, 15231645.
    • (2004) Cancer Res , vol.64 , pp. 4394-4399
    • Yang, L.1
  • 30
    • 0029160069 scopus 로고    scopus 로고
    • Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction
    • Burgering BMT, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 2002, 376:599-602.
    • (2002) Nature , vol.376 , pp. 599-602
    • Burgering, B.M.T.1    Coffer, P.J.2
  • 31
    • 0035063183 scopus 로고    scopus 로고
    • The Rb/E2F pathway and cancer
    • 10.1093/hmg/10.7.699, 11257102
    • Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet 2001, 10:699-703. 10.1093/hmg/10.7.699, 11257102.
    • (2001) Hum Mol Genet , vol.10 , pp. 699-703
    • Nevins, J.R.1
  • 32
    • 9744256274 scopus 로고    scopus 로고
    • Transcriptional Regulation of AKT Activation by E2F
    • 10.1016/j.molcel.2004.11.003, 15574337
    • Chaussepied M, Ginsberg D. Transcriptional Regulation of AKT Activation by E2F. Mol Cell 2004, 16:831-837. 10.1016/j.molcel.2004.11.003, 15574337.
    • (2004) Mol Cell , vol.16 , pp. 831-837
    • Chaussepied, M.1    Ginsberg, D.2
  • 33
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • George EI, Foster DP. Calibration and empirical Bayes variable selection. Biometrika 2000, 87:731-747.
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 34
    • 29144459062 scopus 로고    scopus 로고
    • Efficient empirical Bayes variable selection and estimation in linear models
    • Yuan M, Lin Y. Efficient empirical Bayes variable selection and estimation in linear models. J Am Stat Assoc 2005, 100:1215-1225.
    • (2005) J Am Stat Assoc , vol.100 , pp. 1215-1225
    • Yuan, M.1    Lin, Y.2
  • 35
    • 42649117688 scopus 로고    scopus 로고
    • A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data
    • Wei Z, Li H. A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data. Ann Appl Stat 2008, 2:408-429.
    • (2008) Ann Appl Stat , vol.2 , pp. 408-429
    • Wei, Z.1    Li, H.2
  • 36
    • 84860440017 scopus 로고    scopus 로고
    • Bayesian methods for network-structured genomics data
    • New, York: Springer, Chen MH, Müller P, Sun D, Ye K, Dey DK
    • Li H, Monni S. Bayesian methods for network-structured genomics data. Frontiers of Statistical Decision Making and Bayesian Analysis 2010, 303-315. New, York: Springer, Chen MH, Müller P, Sun D, Ye K, Dey DK.
    • (2010) Frontiers of Statistical Decision Making and Bayesian Analysis , pp. 303-315
    • Li, H.1    Monni, S.2
  • 37
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder H, Schumacher M. Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinf 2009, 10:18.
    • (2009) BMC Bioinf , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 38
    • 77955405900 scopus 로고    scopus 로고
    • Feature selection guided by structural information
    • Slawski M, zu Castell W, Tutz G. Feature selection guided by structural information. Ann Appl Stat 2010, 4:1056-1080.
    • (2010) Ann Appl Stat , vol.4 , pp. 1056-1080
    • Slawski, M.1    zu Castell, W.2    Tutz, G.3
  • 39
    • 60849121073 scopus 로고    scopus 로고
    • Network-based support vector machine for classification of microarray samples
    • Zhu Y, Shen X, Pan W. Network-based support vector machine for classification of microarray samples. BMC Bioinf 2009, 10:S21.
    • (2009) BMC Bioinf , vol.10
    • Zhu, Y.1    Shen, X.2    Pan, W.3
  • 40
    • 80054113423 scopus 로고    scopus 로고
    • Graph constrained discriminant analysis: A new method for the integration of a graph into a classification process
    • 10.1371/journal.pone.0026146, 3195079, 22022543
    • Guillemot V, Tenenhaus A, Le Brusquet L, Frouin V. Graph constrained discriminant analysis: A new method for the integration of a graph into a classification process. PLoS ONE 2011, 6:e26146. 10.1371/journal.pone.0026146, 3195079, 22022543.
    • (2011) PLoS ONE , vol.6
    • Guillemot, V.1    Tenenhaus, A.2    Le Brusquet, L.3    Frouin, V.4
  • 41
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Singapore: World Scientific
    • Hartemink AJ, Bernard A. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. Pac Symp Biocomput 2005 2005, 459-470. Singapore: World Scientific.
    • (2005) Pac Symp Biocomput 2005 , pp. 459-470
    • Hartemink, A.J.1    Bernard, A.2
  • 42
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    • Werhli AV, Husmeier D. Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol 2007, 6:15.
    • (2007) Stat Appl Genet Mol Biol , vol.6 , pp. 15
    • Werhli, A.V.1    Husmeier, D.2
  • 43
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • 10.1073/pnas.0802272105, 2567188, 18799736
    • Mukherjee S, Speed TP. Network inference using informative priors. Proc Natl Acad Sci USA 2008, 105:14313-14318. 10.1073/pnas.0802272105, 2567188, 18799736.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 14313-14318
    • Mukherjee, S.1    Speed, T.P.2
  • 44
    • 0030532505 scopus 로고    scopus 로고
    • Bayesian variable selection with related predictors
    • Chipman H. Bayesian variable selection with related predictors. Can J Stat 1996, 24:17-36.
    • (1996) Can J Stat , vol.24 , pp. 17-36
    • Chipman, H.1
  • 45
    • 50449090913 scopus 로고    scopus 로고
    • Bayesian variable selection for high dimensional generalized linear models: convergence rates of the fitted densities
    • Jiang W. Bayesian variable selection for high dimensional generalized linear models: convergence rates of the fitted densities. Ann Stat 2007, 35:1487-1511.
    • (2007) Ann Stat , vol.35 , pp. 1487-1511
    • Jiang, W.1
  • 46
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • 10.1093/bioinformatics/btg313, 14630656
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19:2271-2282. 10.1093/bioinformatics/btg313, 14630656.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.