-
1
-
-
0025999145
-
Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli
-
Akimaru J, Matsuyama S, Tokuda H, Mizushima S. 1991. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc. Natl. Acad. Sci. USA 88:6545-49
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 6545-6549
-
-
Akimaru, J.1
Matsuyama, S.2
Tokuda, H.3
Mizushima, S.4
-
2
-
-
73949146135
-
Mapping polypeptide interactions of the SecA ATPase during translo-cation
-
Bauer BW, Rapoport TA. 2009. Mapping polypeptide interactions of the SecA ATPase during translo-cation. Proc. Natl. Acad. Sci. USA 106:20800-5
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 20800-20805
-
-
Bauer, B.W.1
Rapoport, T.A.2
-
3
-
-
71549167617
-
Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome
-
Becker T, Bhushan S, Jarasch A, Armache JP, Funes S, et al. 2009. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326:1369-73
-
(2009)
Science
, vol.326
, pp. 1369-1373
-
-
Becker, T.1
Bhushan, S.2
Jarasch, A.3
Armache, J.P.4
Funes, S.5
-
4
-
-
0035798359
-
Architecture of the protein-conducting channel associated with the translating 80S ribosome
-
Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, et al. 2001. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107:361-72
-
(2001)
Cell
, vol.107
, pp. 361-372
-
-
Beckmann, R.1
Spahn, C.M.2
Eswar, N.3
Helmers, J.4
Penczek, P.A.5
-
5
-
-
0036500974
-
The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure
-
Bessonneau P, Besson V, Collinson I, Duong F. 2002. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 21:995-1003
-
(2002)
EMBO J.
, vol.21
, pp. 995-1003
-
-
Bessonneau, P.1
Besson, V.2
Collinson, I.3
Duong, F.4
-
6
-
-
24944458963
-
Atomic model of the E. coli membrane-bound protein translocation complex SecYEG
-
Bostina M, Mohsin B, Kuhlbrandt W, Collinson I. 2005. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J. Mol. Biol. 352:1035-43
-
(2005)
J. Mol. Biol.
, vol.352
, pp. 1035-1043
-
-
Bostina, M.1
Mohsin, B.2
Kuhlbrandt, W.3
Collinson, I.4
-
7
-
-
0037043724
-
Three-dimensional structure of the bacterial protein-translocation complex SecYEG
-
Breyton C, Haase W, Rapoport TA, Kuhlbrandt W, Collinson I. 2002. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418:662-65
-
(2002)
Nature
, vol.418
, pp. 662-665
-
-
Breyton, C.1
Haase, W.2
Rapoport, T.A.3
Kuhlbrandt, W.4
Collinson, I.5
-
8
-
-
0025087853
-
The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation
-
Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. 1990. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:649-57
-
(1990)
Cell
, vol.62
, pp. 649-657
-
-
Brundage, L.1
Hendrick, J.P.2
Schiebel, E.3
Driessen, A.J.4
Wickner, W.5
-
9
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon KS, Or E, Clemons WM Jr, Shibata Y, Rapoport TA. 2005. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169:219-25
-
(2005)
J. Cell Biol.
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
Or, E.2
Clemons Jr., W.M.3
Shibata, Y.4
Rapoport, T.A.5
-
10
-
-
0023026186
-
Formation of a functional ribosome-membrane junction during translo-cation requires the participation of a GTP-binding protein
-
Connolly T, Gilmore R. 1986. Formation of a functional ribosome-membrane junction during translo-cation requires the participation of a GTP-binding protein. J. Cell Biol. 103:2253-61
-
(1986)
J. Cell Biol.
, vol.103
, pp. 2253-2261
-
-
Connolly, T.1
Gilmore, R.2
-
12
-
-
0027985063
-
Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore
-
Crowley KS, Liao S, Worrell VE, Reinhart GD, Johnson AE. 1994. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78:461-71
-
(1994)
Cell
, vol.78
, pp. 461-471
-
-
Crowley, K.S.1
Liao, S.2
Worrell, V.E.3
Reinhart, G.D.4
Johnson, A.E.5
-
13
-
-
0027162564
-
The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation
-
Crowley KS, Reinhart GD, Johnson AE. 1993. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73:1101-15
-
(1993)
Cell
, vol.73
, pp. 1101-1115
-
-
Crowley, K.S.1
Reinhart, G.D.2
Johnson, A.E.3
-
14
-
-
28244452583
-
A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli
-
Deitermann S, Sprie GS, Koch HG. 2005. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J. Biol. Chem. 280:39077-85
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39077-39085
-
-
Deitermann, S.1
Sprie, G.S.2
Koch, H.G.3
-
16
-
-
0027457077
-
A signal sequence is not required for protein export in prlA mutants of Escherichia coli
-
Derman AI, Puziss JW, Bassford PJ Jr, Beckwith J. 1993. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12:879-88
-
(1993)
EMBO J.
, vol.12
, pp. 879-888
-
-
Derman, A.I.1
Puziss, J.W.2
Bassford Jr., P.J.3
Beckwith, J.4
-
17
-
-
79959961077
-
Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex
-
Devaraneni PK, Conti B, Matsumura Y, Yang Z, Johnson AE, Skach WR. 2011. Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 146:134-47
-
(2011)
Cell
, vol.146
, pp. 134-147
-
-
Devaraneni, P.K.1
Conti, B.2
Matsumura, Y.3
Yang, Z.4
Johnson, A.E.5
Skach, W.R.6
-
18
-
-
79953022888
-
The oligomeric state and arrangement of the active bacterial translocon
-
Deville K, Gold VA, Robson A, Whitehouse S, Sessions RB, et al. 2011. The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286:4659-69
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 4659-4669
-
-
Deville, K.1
Gold, V.A.2
Robson, A.3
Whitehouse, S.4
Sessions, R.B.5
-
19
-
-
0042347712
-
Bacillus subtilis SecA ATPase exists as an antiparallel dimer in solution
-
Ding H, Hunt JF, Mukerji I, Oliver D. 2003. Bacillus subtilis SecA ATPase exists as an antiparallel dimer in solution. Biochemistry 42:8729-38
-
(2003)
Biochemistry
, vol.42
, pp. 8729-8738
-
-
Ding, H.1
Hunt, J.F.2
Mukerji, I.3
Oliver, D.4
-
20
-
-
50649104037
-
Protein translocation across the bacterial cytoplasmic membrane
-
Driessen AJ, Nouwen N. 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77:643-67
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 643-667
-
-
Driessen, A.J.1
Nouwen, N.2
-
21
-
-
0030745847
-
The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling
-
Duong F, Wickner W. 1997. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J. 16:4871-79
-
(1997)
EMBO J.
, vol.16
, pp. 4871-4879
-
-
Duong, F.1
Wickner, W.2
-
22
-
-
0032472958
-
Sec-dependent membrane protein biogenesis: SecYEG, preprotein hy-drophobicity and translocation kinetics control the stop-transfer function
-
Duong F, Wickner W. 1998. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hy-drophobicity and translocation kinetics control the stop-transfer function. EMBO J. 17:696-705
-
(1998)
EMBO J.
, vol.17
, pp. 696-705
-
-
Duong, F.1
Wickner, W.2
-
23
-
-
78049253482
-
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes
-
Egea PF, Stroud RM. 2010. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl. Acad. Sci. USA 107:17182-87
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 17182-17187
-
-
Egea, P.F.1
Stroud, R.M.2
-
24
-
-
54049142467
-
A role for the two-helix finger of the SecA ATPase in protein translocation
-
Erlandson KJ, Miller SB, Nam Y, Osborne AR, Zimmer J, Rapoport TA. 2008. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455:984-87
-
(2008)
Nature
, vol.455
, pp. 984-987
-
-
Erlandson, K.J.1
Miller, S.B.2
Nam, Y.3
Osborne, A.R.4
Zimmer, J.5
Rapoport, T.A.6
-
25
-
-
0028022701
-
Sec72p contributes to the selective recognition of signal peptides by the secretory polypeptide translocation complex
-
Feldheim D, Schekman R. 1994. Sec72p contributes to the selective recognition of signal peptides by the secretory polypeptide translocation complex. J. Cell Biol. 126:935-43
-
(1994)
J. Cell Biol.
, vol.126
, pp. 935-943
-
-
Feldheim, D.1
Schekman, R.2
-
26
-
-
0027507707
-
Structural and functional characterization of Sec66p, a new subunit of the polypeptide translocation apparatus in the yeast endoplasmic reticulum
-
Feldheim D, Yoshimura K, Admon A, Schekman R. 1993. Structural and functional characterization of Sec66p, a new subunit of the polypeptide translocation apparatus in the yeast endoplasmic reticulum. Mol. Biol. Cell 4:931-39
-
(1993)
Mol. Biol. Cell
, vol.4
, pp. 931-939
-
-
Feldheim, D.1
Yoshimura, K.2
Admon, A.3
Schekman, R.4
-
27
-
-
85027919032
-
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment
-
Frauenfeld J, Gumbart J, Sluis EO, Funes S, Gartmann M, et al. 2011. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 18:614-21
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 614-621
-
-
Frauenfeld, J.1
Gumbart, J.2
Sluis, E.O.3
Funes, S.4
Gartmann, M.5
-
28
-
-
0028175016
-
Topological "frustration" in multispanning E. coli inner membrane proteins
-
Gafvelin G, von Heijne G. 1994. Topological "frustration" in multispanning E. coli inner membrane proteins. Cell 77:401-12
-
(1994)
Cell
, vol.77
, pp. 401-412
-
-
Gafvelin, G.1
Von Heijne, G.2
-
29
-
-
0032727707
-
Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon
-
Goder V, Bieri C, Spiess M. 1999. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell Biol. 147:257-66
-
(1999)
J. Cell Biol.
, vol.147
, pp. 257-266
-
-
Goder, V.1
Bieri, C.2
Spiess, M.3
-
30
-
-
34547123821
-
Allosteric regulation of SecA: Magnesium-mediated control of conformation and activity
-
Gold VA, Robson A, Clarke AR, Collinson I. 2007. Allosteric regulation of SecA: magnesium-mediated control of conformation and activity. J. Biol. Chem. 282:17424-32
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 17424-17432
-
-
Gold, V.A.1
Robson, A.2
Clarke, A.R.3
Collinson, I.4
-
31
-
-
0027424601
-
Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
-
Gorlich D, Rapoport TA. 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615-30
-
(1993)
Cell
, vol.75
, pp. 615-630
-
-
Gorlich, D.1
Rapoport, T.A.2
-
32
-
-
70450171353
-
Signal peptides are allosteric activators of the protein translocase
-
Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A. 2009. Signal peptides are allosteric activators of the protein translocase. Nature 462:363-67
-
(2009)
Nature
, vol.462
, pp. 363-367
-
-
Gouridis, G.1
Karamanou, S.2
Gelis, I.3
Kalodimos, C.G.4
Economou, A.5
-
33
-
-
70349595267
-
Protein targeting by the signal recognition particle
-
Grudnik P, Bange G, Sinning I. 2009. Protein targeting by the signal recognition particle. Biol. Chem. 390:775-82
-
(2009)
Biol. Chem.
, vol.390
, pp. 775-782
-
-
Grudnik, P.1
Bange, G.2
Sinning, I.3
-
34
-
-
33646271115
-
Molecular dynamics studies of the archaeal translocon
-
Gumbart J, Schulten K. 2006. Molecular dynamics studies of the archaeal translocon. Biophys. J. 90:2356-67
-
(2006)
Biophys. J.
, vol.90
, pp. 2356-2367
-
-
Gumbart, J.1
Schulten, K.2
-
35
-
-
33751074442
-
Simulations of a protein translocation pore: SecY
-
Haider S, Hall BA, Sansom MS. 2006. Simulations of a protein translocation pore: SecY. Biochemistry 45:13018-24
-
(2006)
Biochemistry
, vol.45
, pp. 13018-13024
-
-
Haider, S.1
Hall, B.A.2
Sansom, M.S.3
-
36
-
-
13844266603
-
The signal recognition particle and its interactions during protein targeting
-
Halic M, Beckmann R. 2005. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol. 15:116-25
-
(2005)
Curr. Opin. Struct. Biol.
, vol.15
, pp. 116-125
-
-
Halic, M.1
Beckmann, R.2
-
37
-
-
0030611388
-
The aqueous pore through the translocon has a diameter of 40-60 A° during cotranslational protein translocation at the ER membrane
-
Hamman BD, Chen JC, Johnson EE, Johnson AE. 1997. The aqueous pore through the translocon has a diameter of 40-60 A° during cotranslational protein translocation at the ER membrane. Cell 89:535-44
-
(1997)
Cell
, vol.89
, pp. 535-544
-
-
Hamman, B.D.1
Chen, J.C.2
Johnson, E.E.3
Johnson, A.E.4
-
38
-
-
0032549767
-
BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation
-
Hamman BD, Hendershot LM, Johnson AE. 1998. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747-58
-
(1998)
Cell
, vol.92
, pp. 747-758
-
-
Hamman, B.D.1
Hendershot, L.M.2
Johnson, A.E.3
-
39
-
-
0345444027
-
Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation
-
Hanein D, Matlack KE, Jungnickel B, Plath K, Kalies KU, et al. 1996. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87:721-32
-
(1996)
Cell
, vol.87
, pp. 721-732
-
-
Hanein, D.1
Matlack, K.E.2
Jungnickel, B.3
Plath, K.4
Kalies, K.U.5
-
41
-
-
0000651660
-
The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology
-
Heijne G. 1986. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5:3021-27
-
(1986)
EMBO J.
, vol.5
, pp. 3021-3027
-
-
Heijne, G.1
-
42
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich SU, Mothes W, Brunner J, Rapoport TA. 2000. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:233-44
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
Mothes, W.2
Brunner, J.3
Rapoport, T.A.4
-
43
-
-
13444262028
-
Recognition of transmembrane helices by the endoplasmic reticulum translocon
-
Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, et al. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377-81
-
(2005)
Nature
, vol.433
, pp. 377-381
-
-
Hessa, T.1
Kim, H.2
Bihlmaier, K.3
Lundin, C.4
Boekel, J.5
-
44
-
-
21244480104
-
Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation
-
Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW, Horwich AL. 2005. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121:1029-41
-
(2005)
Cell
, vol.121
, pp. 1029-1041
-
-
Hinnerwisch, J.1
Fenton, W.A.2
Furtak, K.J.3
Farr, G.W.4
Horwich, A.L.5
-
45
-
-
79251576465
-
SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria
-
Huber D, Rajagopalan N, Preissler S, Rocco MA, Merz F, et al. 2011. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol. Cell 41:343-53
-
(2011)
Mol. Cell
, vol.41
, pp. 343-353
-
-
Huber, D.1
Rajagopalan, N.2
Preissler, S.3
Rocco, M.A.4
Merz, F.5
-
46
-
-
0037144467
-
Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA
-
Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P, et al. 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297:2018-26
-
(2002)
Science
, vol.297
, pp. 2018-2026
-
-
Hunt, J.F.1
Weinkauf, S.2
Henry, L.3
Fak, J.J.4
McNicholas, P.5
-
47
-
-
0038305947
-
Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii
-
Irihimovitch V, Eichler J. 2003. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J. Biol. Chem. 278:12881-87
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 12881-12887
-
-
Irihimovitch, V.1
Eichler, J.2
-
49
-
-
77952378779
-
The hydrophobic core of the Sec61 translocon defines the hydropho-bicity threshold for membrane integration
-
Junne T, Kocik L, Spiess M. 2010. The hydrophobic core of the Sec61 translocon defines the hydropho-bicity threshold for membrane integration. Mol. Biol. Cell 21:1662-70
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 1662-1670
-
-
Junne, T.1
Kocik, L.2
Spiess, M.3
-
50
-
-
80455155003
-
A single copy of SecYEG is sufficient for preprotein translocation
-
Kedrov A, Kusters I, Krasnikov VV, Driessen AJM. 2011. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J. 30:4387-97
-
(2011)
EMBO J.
, vol.30
, pp. 4387-4397
-
-
Kedrov, A.1
Kusters, I.2
Krasnikov, V.V.3
Driessen, A.J.M.4
-
51
-
-
0036810271
-
Protein folding during cotranslational translocation in the endoplasmic reticulum
-
Kowarik M, Kung S, Martoglio B, Helenius A. 2002. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10:769-78
-
(2002)
Mol. Cell
, vol.10
, pp. 769-778
-
-
Kowarik, M.1
Kung, S.2
Martoglio, B.3
Helenius, A.4
-
52
-
-
79952470913
-
Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level
-
Kusters I, van den Bogaart G, Kedrov A, Krasnikov V, Fulyani F, et al. 2011. Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure 19:430-39
-
(2011)
Structure
, vol.19
, pp. 430-439
-
-
Kusters, I.1
Van Den Bogaart, G.2
Kedrov, A.3
Krasnikov, V.4
Fulyani, F.5
-
53
-
-
0742305352
-
The endoplasmic reticulum membrane is permeable to small molecules
-
Le Gall S, Neuhof A, Rapoport T. 2004. The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol. Cell 15:447-55
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 447-455
-
-
Le Gall, S.1
Neuhof, A.2
Rapoport, T.3
-
54
-
-
34248523155
-
The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal
-
Li W, Schulman S, Boyd D, Erlandson K, Beckwith J, Rapoport TA. 2007. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell 26:511-21
-
(2007)
Mol. Cell
, vol.26
, pp. 511-521
-
-
Li, W.1
Schulman, S.2
Boyd, D.3
Erlandson, K.4
Beckwith, J.5
Rapoport, T.A.6
-
55
-
-
0031471055
-
Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration
-
Liao S, Lin J, Do H, Johnson AE. 1997. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90:31-41
-
(1997)
Cell
, vol.90
, pp. 31-41
-
-
Liao, S.1
Lin, J.2
Do, H.3
Johnson, A.E.4
-
56
-
-
80053971494
-
Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration
-
Lin PJ, Jongsma CG, Liao S, Johnson AE. 2011. Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration. J. Cell Biol. 195:41-54
-
(2011)
J. Cell Biol.
, vol.195
, pp. 41-54
-
-
Lin, P.J.1
Jongsma, C.G.2
Liao, S.3
Johnson, A.E.4
-
57
-
-
80053991771
-
Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon
-
Lin PJ, Jongsma CG, Pool MR, Johnson AE. 2011. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. J. Cell Biol. 195:55-70
-
(2011)
J. Cell Biol.
, vol.195
, pp. 55-70
-
-
Lin, P.J.1
Jongsma, C.G.2
Pool, M.R.3
Johnson, A.E.4
-
58
-
-
0026801535
-
Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation
-
Locker JK, Rose JK, Horzinek MC, Rottier PJ. 1992. Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J. Biol. Chem. 267:21911-18
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 21911-21918
-
-
Locker, J.K.1
Rose, J.K.2
Horzinek, M.C.3
Rottier, P.J.4
-
59
-
-
0033612302
-
BiP acts as a molecular ratchet during post-translational transport of prepro-αfactor across the ER membrane
-
Matlack KE, Misselwitz B, Plath K, Rapoport TA. 1999. BiP acts as a molecular ratchet during post-translational transport of prepro-αfactor across the ER membrane. Cell 97:553-64
-
(1999)
Cell
, vol.97
, pp. 553-564
-
-
Matlack, K.E.1
Misselwitz, B.2
Plath, K.3
Rapoport, T.A.4
-
60
-
-
46049116259
-
Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome
-
Menetret JF, Hegde RS, Aguiar M, Gygi SP, Park E, et al. 2008. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16:1126-37
-
(2008)
Structure
, vol.16
, pp. 1126-1137
-
-
Menetret, J.F.1
Hegde, R.S.2
Aguiar, M.3
Gygi, S.P.4
Park, E.5
-
61
-
-
37349107850
-
Ribosome binding of a single copy of the SecY complex: Implications for protein translocation
-
Menetret JF, Schaletzky J, Clemons WM Jr, Osborne AR, Skanland SS, et al. 2007. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol. Cell 28:1083-92
-
(2007)
Mol. Cell
, vol.28
, pp. 1083-1092
-
-
Menetret, J.F.1
Schaletzky, J.2
Clemons Jr., W.M.3
Osborne, A.R.4
Skanland, S.S.5
-
62
-
-
0032214832
-
J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences
-
Misselwitz B, Staeck O, Rapoport TA. 1998. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 2:593-603
-
(1998)
Mol. Cell
, vol.2
, pp. 593-603
-
-
Misselwitz, B.1
Staeck, O.2
Rapoport, T.A.3
-
63
-
-
0037687309
-
Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes
-
Mori H, Tsukazaki T, Masui R, Kuramitsu S, Yokoyama S, et al. 2003. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278:14257-64
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 14257-14264
-
-
Mori, H.1
Tsukazaki, T.2
Masui, R.3
Kuramitsu, S.4
Yokoyama, S.5
-
64
-
-
0027936633
-
Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
-
Mothes W, Prehn S, Rapoport TA. 1994. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13:3973-82
-
(1994)
EMBO J.
, vol.13
, pp. 3973-3982
-
-
Mothes, W.1
Prehn, S.2
Rapoport, T.A.3
-
65
-
-
0037057652
-
Crystal structure of bacterial multidrug efflux transporter AcrB
-
Murakami S, Nakashima R, Yamashita E, Yamaguchi A. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587-93
-
(2002)
Nature
, vol.419
, pp. 587-593
-
-
Murakami, S.1
Nakashima, R.2
Yamashita, E.3
Yamaguchi, A.4
-
66
-
-
15744404686
-
The bacterial ATPase SecA functions as a monomer in protein translocation
-
Or E, Boyd D, Gon S, Beckwith J, Rapoport T. 2005. The bacterial ATPase SecA functions as a monomer in protein translocation. J. Biol. Chem. 280:9097-105
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9097-9105
-
-
Or, E.1
Boyd, D.2
Gon, S.3
Beckwith, J.4
Rapoport, T.5
-
67
-
-
0034725568
-
Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii
-
Ortenberg R, Mevarech M. 2000. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. J. Biol. Chem. 275:22839-46
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 22839-22846
-
-
Ortenberg, R.1
Mevarech, M.2
-
69
-
-
33947717366
-
Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
-
Osborne AR, Rapoport TA. 2007. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129:97-110
-
(2007)
Cell
, vol.129
, pp. 97-110
-
-
Osborne, A.R.1
Rapoport, T.A.2
-
71
-
-
33846909238
-
Structure of dimeric SecA, the Escherichia coli preprotein translocase motor
-
Papanikolau Y, Papadovasilaki M, Ravelli RB, McCarthy AA, Cusack S, et al. 2007. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J. Mol. Biol. 366:1545-57
-
(2007)
J. Mol. Biol.
, vol.366
, pp. 1545-1557
-
-
Papanikolau, Y.1
Papadovasilaki, M.2
Ravelli, R.B.3
McCarthy, A.A.4
Cusack, S.5
-
72
-
-
79955901001
-
Preserving the membrane barrier for small molecules during bacterial protein translocation
-
Park E, Rapoport TA. 2011. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473:239-42
-
(2011)
Nature
, vol.473
, pp. 239-242
-
-
Park, E.1
Rapoport, T.A.2
-
73
-
-
20744457369
-
Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase
-
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, et al. 2005. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 280:22892-98
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 22892-22898
-
-
Park, E.1
Rho, Y.M.2
Koh, O.J.3
Ahn, S.W.4
Seong, I.S.5
-
74
-
-
0032544614
-
Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
-
Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94:795-807
-
(1998)
Cell
, vol.94
, pp. 795-807
-
-
Plath, K.1
Mothes, W.2
Wilkinson, B.M.3
Stirling, C.J.4
Rapoport, T.A.5
-
75
-
-
0034597099
-
Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum
-
Plath K, Rapoport TA. 2000. Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum. J. Cell Biol. 151:167-78
-
(2000)
J. Cell Biol.
, vol.151
, pp. 167-178
-
-
Plath, K.1
Rapoport, T.A.2
-
76
-
-
0028009577
-
SecD and SecF facilitate protein export in Escherichia coli
-
Pogliano JA, Beckwith J. 1994. SecD and SecF facilitate protein export in Escherichia coli. EMBO J. 13:554-61
-
(1994)
EMBO J.
, vol.13
, pp. 554-561
-
-
Pogliano, J.A.1
Beckwith, J.2
-
77
-
-
36749001066
-
Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes
-
Rapoport TA. 2007. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663-69
-
(2007)
Nature
, vol.450
, pp. 663-669
-
-
Rapoport, T.A.1
-
79
-
-
34248563028
-
Determining the conductance of the SecY protein translocation channel for small molecules
-
Saparov SM, Erlandson K, Cannon K, Schaletzky J, Schulman S, et al. 2007. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26:501-9
-
(2007)
Mol. Cell
, vol.26
, pp. 501-509
-
-
Saparov, S.M.1
Erlandson, K.2
Cannon, K.3
Schaletzky, J.4
Schulman, S.5
-
80
-
-
79953752538
-
Molecular mechanism of co-translational protein targeting by the signal recognition particle
-
Saraogi I, Shan SO. 2011. Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic 12:535-42
-
(2011)
Traffic
, vol.12
, pp. 535-542
-
-
Saraogi, I.1
Shan, S.O.2
-
81
-
-
33748297447
-
Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane
-
Schaletzky J, Rapoport TA. 2006. Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane. Mol. Biol. Cell 17:3860-69
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 3860-3869
-
-
Schaletzky, J.1
Rapoport, T.A.2
-
82
-
-
27644518797
-
The oligomeric distribution of SecYEG is altered by SecA and translocation ligands
-
Scheuring J, Braun N, Nothdurft L, Stumpf M, Veenendaal AK, et al. 2005. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. J. Mol. Biol. 354:258-71
-
(2005)
J. Mol. Biol.
, vol.354
, pp. 258-271
-
-
Scheuring, J.1
Braun, N.2
Nothdurft, L.3
Stumpf, M.4
Veenendaal, A.K.5
-
83
-
-
77954070546
-
Control of membrane protein topology by a single C-terminal residue
-
Seppala S, Slusky JS, Lloris-Garcera P, Rapp M, von Heijne G. 2010. Control of membrane protein topology by a single C-terminal residue. Science 328:1698-700
-
(2010)
Science
, vol.328
, pp. 1698-1700
-
-
Seppala, S.1
Slusky, J.S.2
Lloris-Garcera, P.3
Rapp, M.4
Von Heijne, G.5
-
84
-
-
0023737896
-
Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum
-
Shaw AS, Rottier PJ, Rose JK. 1988. Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 85:7592-96
-
(1988)
Proc. Natl. Acad. Sci. USA
, vol.85
, pp. 7592-7596
-
-
Shaw, A.S.1
Rottier, P.J.2
Rose, J.K.3
-
85
-
-
1542283751
-
Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates
-
Siddiqui SM, Sauer RT, Baker TA. 2004. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18:369-74
-
(2004)
Genes Dev.
, vol.18
, pp. 369-374
-
-
Siddiqui, S.M.1
Sauer, R.T.2
Baker, T.A.3
-
86
-
-
0025854858
-
A protein-conducting channel in the endoplasmic reticulum
-
Simon SM, Blobel G. 1991. A protein-conducting channel in the endoplasmic reticulum. Cell 65:371-80
-
(1991)
Cell
, vol.65
, pp. 371-380
-
-
Simon, S.M.1
Blobel, G.2
-
87
-
-
24944465005
-
Modeling the effects of prl mutations on the Escherichia coli SecY complex
-
Smith MA, Clemons WM Jr, DeMars CJ, Flower AM. 2005. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187:6454-65
-
(2005)
J. Bacteriol.
, vol.187
, pp. 6454-6465
-
-
Smith, M.A.1
Clemons Jr., W.M.2
Demars, C.J.3
Flower, A.M.4
-
88
-
-
1842561598
-
The organization of engaged and quiescent translocons inthe endoplasmic reticulumofmammalian cells
-
Snapp EL, Reinhart GA, Bogert BA, Lippincott-Schwartz J, Hegde RS. 2004. The organization of engaged and quiescent translocons inthe endoplasmic reticulumofmammalian cells.J. Cell Biol. 164:997-1007
-
(2004)
J. Cell Biol.
, vol.164
, pp. 997-1007
-
-
Snapp, E.L.1
Reinhart, G.A.2
Bogert, B.A.3
Lippincott-Schwartz, J.4
Hegde, R.S.5
-
89
-
-
33646191829
-
Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes
-
Tian P, Andricioaei I. 2006. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 90:2718-30
-
(2006)
Biophys. J.
, vol.90
, pp. 2718-2730
-
-
Tian, P.1
Andricioaei, I.2
-
90
-
-
80052237952
-
Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity
-
Trueman SF, Mandon EC, Gilmore R. 2011. Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol. Biol. Cell 22:2983-93
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2983-2993
-
-
Trueman, S.F.1
Mandon, E.C.2
Gilmore, R.3
-
91
-
-
79958281760
-
Structure and function of a membrane component SecDF that enhances protein export
-
Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, et al. 2011. Structure and function of a membrane component SecDF that enhances protein export. Nature 474:235-38
-
(2011)
Nature
, vol.474
, pp. 235-238
-
-
Tsukazaki, T.1
Mori, H.2
Echizen, Y.3
Ishitani, R.4
Fukai, S.5
-
92
-
-
54049151196
-
Conformational transitionofSec machinery inferred from bacterial SecYE structures
-
Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, et al. 2008. Conformational transitionofSec machinery inferred from bacterial SecYE structures. Nature 455:988-91
-
(2008)
Nature
, vol.455
, pp. 988-991
-
-
Tsukazaki, T.1
Mori, H.2
Fukai, S.3
Ishitani, R.4
Mori, T.5
-
93
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:36-44
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van Den Berg, B.1
Clemons Jr., W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
-
94
-
-
33750846046
-
Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer
-
Vassylyev DG, Mori H, Vassylyeva MN, Tsukazaki T, Kimura Y, et al. 2006. Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J. Mol. Biol. 364:248-58
-
(2006)
J. Mol. Biol.
, vol.364
, pp. 248-258
-
-
Vassylyev, D.G.1
Mori, H.2
Vassylyeva, M.N.3
Tsukazaki, T.4
Kimura, Y.5
-
95
-
-
0035980042
-
Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis
-
Veenendaal AK, van der Does C, Driessen AJ. 2001. Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J. Biol. Chem. 276:32559-66
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 32559-32566
-
-
Veenendaal, A.K.1
Van Der Does, C.2
Driessen, A.J.3
-
97
-
-
0037150672
-
Identification of signal peptide peptidase, a presenilin-type aspartic protease
-
Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B. 2002. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296:2215-18
-
(2002)
Science
, vol.296
, pp. 2215-2218
-
-
Weihofen, A.1
Binns, K.2
Lemberg, M.K.3
Ashman, K.4
Martoglio, B.5
-
99
-
-
39149133696
-
Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases
-
Xie K, Dalbey RE. 2008. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat. Rev. Microbiol. 6:234-44
-
(2008)
Nat. Rev. Microbiol.
, vol.6
, pp. 234-244
-
-
Xie, K.1
Dalbey, R.E.2
-
100
-
-
0348010363
-
Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
-
Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. 2003. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278:50182-87
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 50182-50187
-
-
Yamada-Inagawa, T.1
Okuno, T.2
Karata, K.3
Yamanaka, K.4
Ogura, T.5
-
101
-
-
33750821188
-
A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA
-
Zimmer J, Li W, Rapoport TA. 2006. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364:259-65
-
(2006)
J. Mol. Biol.
, vol.364
, pp. 259-265
-
-
Zimmer, J.1
Li, W.2
Rapoport, T.A.3
-
102
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
Zimmer J, Nam Y, Rapoport TA. 2008. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936-43
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
Nam, Y.2
Rapoport, T.A.3
-
103
-
-
70449534599
-
Conformational flexibility and peptide interaction of the translocation ATPase SecA
-
Zimmer J, Rapoport TA. 2009. Conformational flexibility and peptide interaction of the translocation ATPase SecA. J. Mol. Biol. 394:606-12
-
(2009)
J. Mol. Biol.
, vol.394
, pp. 606-612
-
-
Zimmer, J.1
Rapoport, T.A.2
|