-
1
-
-
2542501662
-
Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine
-
Barnard DL, et al. 2004. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine. Antivir. Chem. Chemother. 15:15-22.
-
(2004)
Antivir. Chem. Chemother
, vol.15
, pp. 15-22
-
-
Barnard, D.L.1
-
2
-
-
29744455503
-
The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity
-
Barretto N, et al. 2005. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol. 79:15189-15198.
-
(2005)
J. Virol
, vol.79
, pp. 15189-15198
-
-
Barretto, N.1
-
3
-
-
0023661249
-
Colocalization of calcium-dependent protease-II and one of its substrates at sites of cell-adhesion
-
Beckerle MC, Burridge K, Demartino GN, Croall DE. 1987. Colocalization of calcium-dependent protease-II and one of its substrates at sites of cell-adhesion. Cell 51:569-577.
-
(1987)
Cell
, vol.51
, pp. 569-577
-
-
Beckerle, M.C.1
Burridge, K.2
Demartino, G.N.3
Croall, D.E.4
-
4
-
-
0030898710
-
Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance
-
Bush KT, Goldberg AL, Nigam SK. 1997. Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J. Biol. Chem. 272:9086-9092.
-
(1997)
J. Biol. Chem
, vol.272
, pp. 9086-9092
-
-
Bush, K.T.1
Goldberg, A.L.2
Nigam, S.K.3
-
5
-
-
33748502744
-
Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein
-
Chan CP, et al. 2006. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 80:9279-9287.
-
(2006)
J. Virol
, vol.80
, pp. 9279-9287
-
-
Chan, C.P.1
-
6
-
-
0028500556
-
The ubiquitin-mediated proteolytic pathway-mechanisms of action and cellular physiology
-
Ciechanover A. 1994. The ubiquitin-mediated proteolytic pathway-mechanisms of action and cellular physiology. Biol. Chem. Hoppe-Seyler 375:565-581.
-
(1994)
Biol. Chem. Hoppe-Seyler
, vol.375
, pp. 565-581
-
-
Ciechanover, A.1
-
7
-
-
0028883978
-
The adenovirus protease is required for virus entry into host-cells
-
Cotten M, Weber JM. 1995. The adenovirus protease is required for virus entry into host-cells. Virology 213:494-502.
-
(1995)
Virology
, vol.213
, pp. 494-502
-
-
Cotten, M.1
Weber, J.M.2
-
8
-
-
41149153281
-
Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step
-
Delboy MG, Roller DG, Nicola AV. 2008. Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. J. Virol. 82:3381-3390.
-
(2008)
J. Virol
, vol.82
, pp. 3381-3390
-
-
Delboy, M.G.1
Roller, D.G.2
Nicola, A.V.3
-
9
-
-
38049052311
-
Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection
-
Diemer C, et al. 2008. Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection. J. Mol. Biol. 376:23-34.
-
(2008)
J. Mol. Biol
, vol.376
, pp. 23-34
-
-
Diemer, C.1
-
10
-
-
34548299555
-
Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability
-
Ding WX, et al. 2007. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am. J. Pathol. 171:513-524.
-
(2007)
Am. J. Pathol
, vol.171
, pp. 513-524
-
-
Ding, W.X.1
-
11
-
-
77957950482
-
Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences
-
Drexler JF, et al. 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84:11336-11349.
-
(2010)
J. Virol
, vol.84
, pp. 11336-11349
-
-
Drexler, J.F.1
-
12
-
-
0038523806
-
Identification of a novel coronavirus in patients with severe acute respiratory syndrome
-
Drosten C, et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:1967-1976.
-
(2003)
N. Engl. J. Med
, vol.348
, pp. 1967-1976
-
-
Drosten, C.1
-
13
-
-
34247646062
-
The anticancer drug imatinib induces cellular autophagy
-
Ertmer A, et al. 2007. The anticancer drug imatinib induces cellular autophagy. Leukemia 21:936-942.
-
(2007)
Leukemia
, vol.21
, pp. 936-942
-
-
Ertmer, A.1
-
14
-
-
33645823654
-
The ubiquitin-proteasome pathway in viral infections
-
Gao G, Luo HL. 2006. The ubiquitin-proteasome pathway in viral infections. Can. J. Physiol. Pharmacol. 84:5-14.
-
(2006)
Can. J. Physiol. Pharmacol
, vol.84
, pp. 5-14
-
-
Gao, G.1
Luo, H.L.2
-
15
-
-
17844392850
-
Intracellular re-routing of prion protein prevents propagation of PrPSc and delays onset of prion disease
-
Gilch S, et al. 2001. Intracellular re-routing of prion protein prevents propagation of PrPSc and delays onset of prion disease. EMBOJ. 20:3957-3966.
-
(2001)
EMBOJ
, vol.20
, pp. 3957-3966
-
-
Gilch, S.1
-
16
-
-
0025239385
-
Calmodulin and calcium-dependent protease-I coordinately regulate the interaction of fodrin with actin
-
Harris AS, Morrow JS. 1990. Calmodulin and calcium-dependent protease-I coordinately regulate the interaction of fodrin with actin. Proc. Natl. Acad. Sci. U. S. A. 87:3009-3013.
-
(1990)
Proc. Natl. Acad. Sci. U. S. A
, vol.87
, pp. 3009-3013
-
-
Harris, A.S.1
Morrow, J.S.2
-
17
-
-
0031455371
-
Regulation of cell migration by the calciumdependent protease calpain
-
Huttenlocher A, et al. 1997. Regulation of cell migration by the calciumdependent protease calpain. J. Biol. Chem. 272:32719-32722.
-
(1997)
J. Biol. Chem
, vol.272
, pp. 32719-32722
-
-
Huttenlocher, A.1
-
18
-
-
0037468475
-
Structure-activity relationship study and drug profile of N-(4-fluorophenylsulfonyl)-L-valyl-L-leucinal (SJA6017) as a potent calpain inhibitor
-
Inoue J, et al. 2003. Structure-activity relationship study and drug profile of N-(4-fluorophenylsulfonyl)-L-valyl-L-leucinal (SJA6017) as a potent calpain inhibitor. J. Med. Chem. 46:868-871.
-
(2003)
J. Med. Chem
, vol.46
, pp. 868-871
-
-
Inoue, J.1
-
19
-
-
34547743810
-
Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted
-
Inoue Y, et al. 2007. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol. 81:8722-8729.
-
(2007)
J. Virol
, vol.81
, pp. 8722-8729
-
-
Inoue, Y.1
-
20
-
-
33749125231
-
The relationship of severe acute respiratory syndrome coronavirus with avian and other coronaviruses
-
Jackwood MW. 2006. The relationship of severe acute respiratory syndrome coronavirus with avian and other coronaviruses. Avian Dis. 50:315-320.
-
(2006)
Avian Dis
, vol.50
, pp. 315-320
-
-
Jackwood, M.W.1
-
21
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya Y, et al. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720-5728.
-
(2000)
EMBO J
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
-
22
-
-
0347380840
-
The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells
-
Khor R, McElroy LJ, Whittaker GR. 2003. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic 4:857-868.
-
(2003)
Traffic
, vol.4
, pp. 857-868
-
-
Khor, R.1
McElroy, L.J.2
Whittaker, G.R.3
-
23
-
-
0043234302
-
M-calpain colocalizes with the calcium-sensing receptor (CaR) in caveolae in parathyroid cells and participates in degradation of the CaR
-
Kifor O, Kifor I, Moore FD, Butters RR, Brown EM. 2003. M-calpain colocalizes with the calcium-sensing receptor (CaR) in caveolae in parathyroid cells and participates in degradation of the CaR. J. Biol. Chem. 278:31167-31176.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 31167-31176
-
-
Kifor, O.1
Kifor, I.2
Moore, F.D.3
Butters, R.R.4
Brown, E.M.5
-
24
-
-
0035448296
-
Ubiquitination is essential for human cytomega-lovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol
-
Kikkert M, et al. 2001. Ubiquitination is essential for human cytomega-lovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem. J. 358:369-377.
-
(2001)
Biochem. J.
, vol.358
, pp. 369-377
-
-
Kikkert, M.1
-
25
-
-
0028133370
-
Coronavirus M-proteins accumulate in the Golgi complex beyond the site of virion budding
-
Klumperman J, et al. 1994. Coronavirus M-proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol. 68:6523-6534.
-
(1994)
J. Virol
, vol.68
, pp. 6523-6534
-
-
Klumperman, J.1
-
26
-
-
0037566901
-
For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection
-
Kostova Z, Wolf DH. 2003. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J. 22:2309-2317.
-
(2003)
EMBO J
, vol.22
, pp. 2309-2317
-
-
Kostova, Z.1
Wolf, D.H.2
-
27
-
-
0141926488
-
Mass spectrometric characterization of proteins from the SARS virus: a preliminary report
-
Krokhin O, et al. 2003. Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol. Cell. Proteomics 2:346-356.
-
(2003)
Mol. Cell. Proteomics
, vol.2
, pp. 346-356
-
-
Krokhin, O.1
-
28
-
-
0038076030
-
A novel coronavirus associated with severe acute respiratory syndrome
-
Ksiazek TG, et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348:1953-1966.
-
(2003)
N. Engl. J. Med
, vol.348
, pp. 1953-1966
-
-
Ksiazek, T.G.1
-
30
-
-
0042198682
-
Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome
-
Kuiken T, et al. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263-270.
-
(2003)
Lancet
, vol.362
, pp. 263-270
-
-
Kuiken, T.1
-
31
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032-1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
-
32
-
-
33646171070
-
Stress induction of GRP78/BiP and its role in cancer
-
Li JZ, Lee AS. 2006. Stress induction of GRP78/BiP and its role in cancer. Curr. Mol. Med. 6:45-54.
-
(2006)
Curr. Mol. Med
, vol.6
, pp. 45-54
-
-
Li, J.Z.1
Lee, A.S.2
-
33
-
-
0344395657
-
Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
-
Li W, et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450-454.
-
(2003)
Nature
, vol.426
, pp. 450-454
-
-
Li, W.1
-
34
-
-
27344438916
-
Bats are natural reservoirs of SARS-like coronaviruses
-
Li W, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676-679.
-
(2005)
Science
, vol.310
, pp. 676-679
-
-
Li, W.1
-
35
-
-
29744463886
-
The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme
-
Lindner HA, et al. 2005. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 79:15199-15208.
-
(2005)
J. Virol
, vol.79
, pp. 15199-15208
-
-
Lindner, H.A.1
-
36
-
-
78049525017
-
Proteasome inhibition in vivo promotes survival in a lethal murine model of severe acute respiratory syndrome
-
Ma XZ, et al. 2010. Proteasome inhibition in vivo promotes survival in a lethal murine model of severe acute respiratory syndrome. J. Virol. 84:12419-12428.
-
(2010)
J. Virol
, vol.84
, pp. 12419-12428
-
-
Ma, X.Z.1
-
37
-
-
0038823524
-
The genome sequence of the SARS-associated coronavirus
-
Marra MA, et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300:1399-1404.
-
(2003)
Science
, vol.300
, pp. 1399-1404
-
-
Marra, M.A.1
-
38
-
-
77949519531
-
The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor
-
doi:10.1371/journal.pone.0008342
-
Minakshi R, et al. 2009. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4:e8342. doi:10.1371/journal.pone.0008342.
-
(2009)
PLoS One
, vol.4
-
-
Minakshi, R.1
-
40
-
-
0036064775
-
Calpain II colocalizes with detergent-insoluble rafts on human and Jurkat T-cells
-
Morford LA, et al. 2002. Calpain II colocalizes with detergent-insoluble rafts on human and Jurkat T-cells. Biochem. Biophys. Res. Commun. 295:540-546.
-
(2002)
Biochem. Biophys. Res. Commun
, vol.295
, pp. 540-546
-
-
Morford, L.A.1
-
41
-
-
0141762744
-
The calpains in aging and aging-related diseases
-
Nixon RA. 2003. The calpains in aging and aging-related diseases. Ageing Res. Rev. 2:407-418.
-
(2003)
Ageing Res. Rev
, vol.2
, pp. 407-418
-
-
Nixon, R.A.1
-
42
-
-
26444552119
-
Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein
-
Pager CT, Dutch RE. 2005. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J. Virol. 79:12714-12720.
-
(2005)
J. Virol
, vol.79
, pp. 12714-12720
-
-
Pager, C.T.1
Dutch, R.E.2
-
43
-
-
0242717589
-
Coronavirus as a possible cause of severe acute respiratory syndrome
-
Peiris JS, et al. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319-1325.
-
(2003)
Lancet
, vol.361
, pp. 1319-1325
-
-
Peiris, J.S.1
-
44
-
-
67349158649
-
Coronaviruses post-SARS: update on replication and pathogenesis
-
Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7:439-450.
-
(2009)
Nat. Rev. Microbiol
, vol.7
, pp. 439-450
-
-
Perlman, S.1
Netland, J.2
-
45
-
-
77954469341
-
The proteasome inhibitor velcade enhances rather than reduces disease in mouse hepatitis coronavirus-infected mice
-
Raaben M, Grinwis GCM, Rottier PJM, de Haan CAM. 2010. The proteasome inhibitor velcade enhances rather than reduces disease in mouse hepatitis coronavirus-infected mice. J. Virol. 84:7880-7885.
-
(2010)
J. Virol
, vol.84
, pp. 7880-7885
-
-
Raaben, M.1
Grinwis, G.C.M.2
Rottier, P.J.M.3
de Haan, C.A.M.4
-
46
-
-
77954477478
-
The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle
-
Raaben M, et al. 2010. The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle. J. Virol. 84:7869-7879.
-
(2010)
J. Virol
, vol.84
, pp. 7869-7879
-
-
Raaben, M.1
-
47
-
-
77956525570
-
Coronaviruses hijack the LC3-I-positive EDEMo-somes, ER-derived vesicles exporting short-lived ERAD regulators, for replication
-
Reggiori F, et al. 2010. Coronaviruses hijack the LC3-I-positive EDEMo-somes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host. Microbe 7:500-508.
-
(2010)
Cell Host. Microbe
, vol.7
, pp. 500-508
-
-
Reggiori, F.1
-
49
-
-
62749192159
-
Inhibition of the ubiquitin-proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes
-
Satheshkumar PS, Anton LC, Sanz P, Moss B. 2009. Inhibition of the ubiquitin-proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes. J. Virol. 83:2469-2479.
-
(2009)
J. Virol
, vol.83
, pp. 2469-2479
-
-
Satheshkumar, P.S.1
Anton, L.C.2
Sanz, P.3
Moss, B.4
-
50
-
-
34250335677
-
The molecular biology of SARS coronavirus
-
Satija N, Lal SK. 2007. The molecular biology of SARS coronavirus. Ann. N. Y. Acad. Sci. 1102:26-38.
-
(2007)
Ann. N. Y. Acad. Sci
, vol.1102
, pp. 26-38
-
-
Satija, N.1
Lal, S.K.2
-
51
-
-
0031935031
-
CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway
-
Schubert U, et al. 1998. CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72:2280-2288.
-
(1998)
J. Virol
, vol.72
, pp. 2280-2288
-
-
Schubert, U.1
-
52
-
-
0034700088
-
Proteasome inhibition interferes with Gag polyprotein processing, release, and maturation of HIV-1 and HIV-2
-
Schubert U, et al. 2000. Proteasome inhibition interferes with Gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl. Acad. Sci. U. S. A. 97:13057-13062.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A
, vol.97
, pp. 13057-13062
-
-
Schubert, U.1
-
53
-
-
0035167960
-
Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol
-
Shamu CE, Flierman D, Ploegh HL, Rapoport TA, Chau V. 2001. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol. Biol. Cell 12:2546-2555.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2546-2555
-
-
Shamu, C.E.1
Flierman, D.2
Ploegh, H.L.3
Rapoport, T.A.4
Chau, V.5
-
54
-
-
20744441360
-
Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway
-
Si XN, et al. 2005. Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J. Virol. 79:8014-8023.
-
(2005)
J. Virol
, vol.79
, pp. 8014-8023
-
-
Si, X.N.1
-
55
-
-
23844448345
-
Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry
-
Simmons G, et al. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. U. S. A. 102:11876-11881.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A
, vol.102
, pp. 11876-11881
-
-
Simmons, G.1
-
56
-
-
40649099135
-
SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium
-
Sims AC, Burkett SE, Yount B, Pickles RJ. 2008. SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus Res. 133:33-44.
-
(2008)
Virus Res
, vol.133
, pp. 33-44
-
-
Sims, A.C.1
Burkett, S.E.2
Yount, B.3
Pickles, R.J.4
-
57
-
-
0042164218
-
Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage
-
Snijder EJ, et al. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331:991-1004.
-
(2003)
J. Mol. Biol
, vol.331
, pp. 991-1004
-
-
Snijder, E.J.1
-
58
-
-
33744928372
-
Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex
-
Snijder EJ, et al. 2006. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 80:5927-5940.
-
(2006)
J. Virol
, vol.80
, pp. 5927-5940
-
-
Snijder, E.J.1
-
59
-
-
34147135956
-
The intracellular sites of early replication and budding of SARS-coronavirus
-
Stertz S, et al. 2007. The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361:304-315.
-
(2007)
Virology
, vol.361
, pp. 304-315
-
-
Stertz, S.1
-
60
-
-
43649101455
-
The SARS-CoV nucleocapsid protein: a protein with multifarious activities
-
Surjit M, Lal SK. 2008. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect. Genet. Evol. 8:397-405.
-
(2008)
Infect. Genet. Evol
, vol.8
, pp. 397-405
-
-
Surjit, M.1
Lal, S.K.2
-
61
-
-
33748467621
-
Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus
-
Tan YJ, Lim SG, Hong W. 2006. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res. 72:78-88.
-
(2006)
Antiviral Res
, vol.72
, pp. 78-88
-
-
Tan, Y.J.1
Lim, S.G.2
Hong, W.3
-
62
-
-
60049095589
-
Orthopoxviruses require a functional ubiquitin-proteasome system for productive replication
-
Teale A, et al. 2009. Orthopoxviruses require a functional ubiquitin-proteasome system for productive replication. J. Virol. 83:2099-2108.
-
(2009)
J. Virol
, vol.83
, pp. 2099-2108
-
-
Teale, A.1
-
63
-
-
0042377358
-
Mechanisms and enzymes involved in SARS coronavirus genome expression
-
Thiel V, et al. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84:2305-2315.
-
(2003)
J. Gen. Virol
, vol.84
, pp. 2305-2315
-
-
Thiel, V.1
-
64
-
-
0029877917
-
Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine
-
Tsubuki S, Saito Y, Tomioka M, Ito H, Kawashima S. 1996. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J. Biochem. 119:572-576.
-
(1996)
J. Biochem
, vol.119
, pp. 572-576
-
-
Tsubuki, S.1
Saito, Y.2
Tomioka, M.3
Ito, H.4
Kawashima, S.5
-
65
-
-
38349110546
-
Calpain 1 and 2 are required for RNA replication of echovirus 1
-
Upla P, et al. 2008. Calpain 1 and 2 are required for RNA replication of echovirus 1. J. Virol. 82:1581-1590.
-
(2008)
J. Virol
, vol.82
, pp. 1581-1590
-
-
Upla, P.1
-
66
-
-
77955427276
-
Viral hijacking of the host ubiquitin system to evade interferon responses
-
Viswanathan K, Fruh K, DeFilippis V. 2010. Viral hijacking of the host ubiquitin system to evade interferon responses. Curr. Opin. Microbiol. 13:517-523.
-
(2010)
Curr. Opin. Microbiol
, vol.13
, pp. 517-523
-
-
Viswanathan, K.1
Fruh, K.2
DeFilippis, V.3
-
67
-
-
46249132335
-
Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2
-
Wang S, et al. 2008. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res. 136:8-15.
-
(2008)
Virus Res
, vol.136
, pp. 8-15
-
-
Wang, S.1
-
68
-
-
77956044811
-
Inhibition of the ubiquitin-proteasome system affects influenza A virus infection at a postfusion step
-
Widjaja I, et al. 2010. Inhibition of the ubiquitin-proteasome system affects influenza A virus infection at a postfusion step. J. Virol. 84:9625-9631.
-
(2010)
J. Virol
, vol.84
, pp. 9625-9631
-
-
Widjaja, I.1
-
69
-
-
48349087467
-
Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells
-
Wu WKK, et al. 2008. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells. Biochem. Biophys. Res. Commun. 374:258-263.
-
(2008)
Biochem. Biophys. Res. Commun
, vol.374
, pp. 258-263
-
-
Wu, W.K.K.1
-
70
-
-
2442691605
-
pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN
-
Yang ZY, et al. 2004. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78:5642-5650.
-
(2004)
J. Virol
, vol.78
, pp. 5642-5650
-
-
Yang, Z.Y.1
-
71
-
-
52949145684
-
A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis
-
Ye Z, Wong CK, Li P, Xie Y. 2008. A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis. Biochim. Biophys. Acta 1780:1383-1387.
-
(2008)
Biochim. Biophys. Acta
, vol.1780
, pp. 1383-1387
-
-
Ye, Z.1
Wong, C.K.2
Li, P.3
Xie, Y.4
-
72
-
-
10644245814
-
The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry
-
Yu GY, Lai MAC. 2005. The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J. Virol. 79:644-648.
-
(2005)
J. Virol
, vol.79
, pp. 644-648
-
-
Yu, G.Y.1
Lai, M.A.C.2
-
73
-
-
35848954083
-
Coronavirus replication does not require the autophagy gene ATG5
-
Zhao Z, et al. 2007. Coronavirus replication does not require the autophagy gene ATG5. Autophagy 3:581-585.
-
(2007)
Autophagy
, vol.3
, pp. 581-585
-
-
Zhao, Z.1
|