메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 1130-1138

Hyperspectral image classification using support vector machines: A comparison with decision tree and neural network classifiers

Author keywords

[No Author keywords available]

Indexed keywords

BEST VALUE; BP NEURAL NETWORK CLASSIFIER; CLASSIFICATION ACCURACY; COMPUTATIONALLY EFFICIENT; CONFIDENCE LEVELS; DECISION TREE CLASSIFIERS; HIGH-DIMENSIONAL DATASET; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGE CLASSIFICATION; IN-HOUSE CODES; KAPPA COEFFICIENT; MATLAB ENVIRONMENT; MULTISPECTRAL REMOTE SENSING; NEURAL NETWORK CLASSIFIER; NON-PARAMETRIC; PARAMETRIC CLASSIFIER; POLYNOMIAL KERNELS; RADIAL BASIS FUNCTION NEURAL NETWORKS; RBF CLASSIFIERS; RBF NEURAL NETWORK; SPECTRAL BAND; SVM CLASSIFICATION; SVM CLASSIFIERS; SVM-BASED CLASSIFIERS;

EID: 84869043828     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (45)
  • 1
    • 1342332460 scopus 로고    scopus 로고
    • Multi-source classification using artificial neural network in rugged terrain
    • Arora, M. K., & S. Mathur. (2001). Multi-source Classification using Artificial Neural Network in Rugged Terrain. Geocarto International, 16(3), 37-44.
    • (2001) Geocarto International , vol.16 , Issue.3 , pp. 37-44
    • Arora, M.K.1    Mathur, S.2
  • 6
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kernel function parameters in RBF neural networks for classification of remote sensing images
    • Bruzzone, L., & D. F. Prieto. (1999). A technique for the selection of kernel function parameters in RBF neural networks for classification of remote sensing images. IEEE Trans. Geosci. Remote Sensing, 37, 1179-1184.
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , pp. 1179-1184
    • Bruzzone, L.1    Prieto, D.F.2
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & V. Vapnik. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. on Electronic Computers, EC-14, 326-334.
    • (1965) IEEE Trans. on Electronic Computers , vol.EC-14 , pp. 326-334
    • Cover, T.M.1
  • 14
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: An alternative to traditional land cover classifiers
    • Hansen, M., R. Dubayah, & R. DeFries. (1996). Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing, 17, 1075-1081.
    • (1996) International Journal of Remote Sensing , vol.17 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    Defries, R.3
  • 15
    • 0003413187 scopus 로고    scopus 로고
    • Neural networks: A comprehensive foundation
    • 2nd ed., N.J.: Prentice Hall
    • Haykin, S. S. (1999). Neural networks : a comprehensive foundation (2nd ed.). Upper Saddle River, N.J.: Prentice Hall.
    • (1999) Upper Saddle River
    • Haykin, S.S.1
  • 16
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., L. S. Davis, & J. R. Townshend. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725-749.
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.3
  • 17
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognition. IEEE Trans. Inform. Theory, 14(55- 63).
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 18
    • 0030318229 scopus 로고    scopus 로고
    • Introductory digital image processing: A remote sensing perspective
    • 2nd ed., N.J.: Prentice Hall
    • Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective (2nd ed.). Upper Saddle River, N.J.: Prentice Hall.
    • (1996) Upper Saddle River
    • Jensen, J.R.1
  • 19
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • B. Schölkopf & C. Burges & A. J. Smola (Eds.), Cambridge, MA: The MIT Press
    • Kreßel, U. (1999). Pairwise classification and support vector machines. In B. Schölkopf & C. Burges & A. J. Smola (Eds.), Advances in kernel methods - support vector learning (pp. 255-268). Cambridge, MA: The MIT Press.
    • (1999) Advances in Kernel Methods- Support Vector Learning , pp. 255-268
    • Kreßel, U.1
  • 20
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Landgrebe, D. (2002). Hyperspectral image data analysis. IEEE Signal Process. Mag., 19, 17-28.
    • (2002) IEEE Signal Process. Mag. , vol.19 , pp. 17-28
    • Landgrebe, D.1
  • 21
    • 0037546937 scopus 로고    scopus 로고
    • Comparison of neural and statistical algorithms for supervised classification of multi-dimensional data
    • Li, T. S., C. Y. Chen, & C. T. Su. (2003). Comparison of neural and statistical algorithms for supervised classification of multi-dimensional data. Int. J. Indus. Eng. - Theory Appl. Pract., 10, 73-81.
    • (2003) Int. J. Indus. Eng.- Theory Appl. Pract. , vol.10 , pp. 73-81
    • Li, T.S.1    Chen, C.Y.2    Su, C.T.3
  • 22
    • 17544373132 scopus 로고
    • Ridge functions, sigmoidal functions and neural networks
    • E. W. Cheney & C. K. Chui & L.L. Schumaker (Eds.), Boston: Academic Press
    • Light, W. A. (1992). Ridge functions, sigmoidal functions and neural networks. In E. W. Cheney & C. K. Chui & L.L. Schumaker (Eds.), Approximation Theory VII (pp. 163-206). Boston: Academic Press.
    • (1992) Approximation Theory , vol.7 , pp. 163-206
    • Light, W.A.1
  • 23
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippman, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4, 2-22.
    • (1987) IEEE ASSP Magazine , vol.4 , pp. 2-22
    • Lippman, R.P.1
  • 26
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M., & P. M. Mather. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86, 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 27
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remote sensed multi-spectral imagery
    • Paola, J. D., & R. A. Schowengerdt. (1995). A review and analysis of backpropagation neural networks for classification of remote sensed multi-spectral imagery. International Journal of Remote Sensing, 16, 3033- 3058.
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 28
    • 0030618062 scopus 로고    scopus 로고
    • The effect of neural network structure on a multispectral land-use/land cover classification
    • Paola, J. D., & R. A. Schowengerdt. (1997). The effect of neural network structure on a multispectral land-use/land cover classification. Photogrammetric Engineering and Remote Sensing, 63, 535-544.
    • (1997) Photogrammetric Engineering and Remote Sensing , vol.63 , pp. 535-544
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 29
    • 0028740098 scopus 로고
    • Multisource image classification II: An empirical comparison of evidential reasoning and neural network approaches
    • Peddle, D. R., G. M. Foody, A. Zhang, S. E. Franklin, & E. F. LeDrew. (1994). Multisource image classification II: An empirical comparison of evidential reasoning and neural network approaches. Can. J. Remote Sens., 20, 396-407.
    • (1994) Can. J. Remote Sens. , vol.20 , pp. 396-407
    • Peddle, D.R.1    Foody, G.M.2    Zhang, A.3    Franklin, S.E.4    Ledrew, E.F.5
  • 31
  • 35
    • 0036221284 scopus 로고    scopus 로고
    • A comparison of methods for monitoring multitemporal vegetation change using thematic mapper imagery
    • Rogan, J., J. Franklin, & D. A. Roberts. (2002). A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 80, 143-156.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 143-156
    • Rogan, J.1    Franklin, J.2    Roberts, D.A.3
  • 44
    • 21444437262 scopus 로고    scopus 로고
    • Support vector machines for classification of multi- and hyperspectral data
    • P. K. Varshney & M. K. Arora (Eds.), Springer-Verlag
    • Watanachaturaporn, P., & M. K. Arora. (2004). Support vector machines for classification of multi- and hyperspectral data. In P. K. Varshney & M. K. Arora (Eds.), Advanced image processing techniques for remotely sensed hyperspectral data (pp. 237-255): Springer-Verlag.
    • (2004) Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data , pp. 237-255
    • Watanachaturaporn, P.1    Arora, M.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.