메뉴 건너뛰기




Volumn 44, Issue 11, 2006, Pages 3374-3385

Toward an optimal SVM classification system for hyperspectral remote sensing images

Author keywords

Feature detection; Feature selection; Generalization bounds; Genetic algorithms (GAs); Hyperspectral image classification; Sparseness; Support vector machines (SVMs)

Indexed keywords

FEATURE DETECTION; FEATURE SELECTION; GENERALIZATION BOUNDS; HYPERSPECTRAL IMAGE CLASSIFICATION; SUPPORT VECTOR MACHINES (SVM);

EID: 33750798496     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2006.880628     Document Type: Article
Times cited : (409)

References (47)
  • 1
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 2
    • 0030189750 scopus 로고    scopus 로고
    • Covariance matrix estimation and classification with limited training data
    • Jul.
    • J. P. Hoffbeck and D. A. Landgrebe, "Covariance matrix estimation and classification with limited training data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 763-767, Jul. 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.7 , pp. 763-767
    • Hoffbeck, J.P.1    Landgrebe, D.A.2
  • 3
    • 0032633354 scopus 로고    scopus 로고
    • Covariance estimation with limited training samples
    • Jul.
    • S. Tadjudin and D. A. Landgrebe, "Covariance estimation with limited training samples," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 4, pp. 2113-2118, Jul. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.4 , pp. 2113-2118
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 4
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sep.
    • B. M. Shahshahani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 5
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Dec.
    • Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 6
    • 0027579237 scopus 로고
    • Feature extraction based on decision boundaries
    • Apr.
    • C. Lee and D. A. Landgrebe, "Feature extraction based on decision boundaries," IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 4, pp. 388-400, Apr. 1993.
    • (1993) IEEE Trans. Pattern Anal. Mach. Intell. , vol.15 , Issue.4 , pp. 388-400
    • Lee, C.1    Landgrebe, D.A.2
  • 7
    • 0033224771 scopus 로고    scopus 로고
    • Hyperspectral data analysis and feature reduction via projection pursuit
    • Nov.
    • L. O. Jimenez and D. A. Landgrebe, "Hyperspectral data analysis and feature reduction via projection pursuit," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2653-2667, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2653-2667
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 8
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Jul.
    • S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 9
    • 0030222695 scopus 로고    scopus 로고
    • Classification of remote sensing images having high-spectral resolution
    • Sep.
    • J. P. Hoffbeck and D. A. Landgrebe, "Classification of remote sensing images having high-spectral resolution," Remote Sens. Environ., vol. 57, no. 3, pp. 119-126, Sep. 1996.
    • (1996) Remote Sens. Environ. , vol.57 , Issue.3 , pp. 119-126
    • Hoffbeck, J.P.1    Landgrebe, D.A.2
  • 10
    • 0036477182 scopus 로고    scopus 로고
    • A derivative-aided hyperspectral image analysis system for land-cover classification
    • Feb.
    • F. Tsai and W. D. Philpot, "A derivative-aided hyperspectral image analysis system for land-cover classification," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 2, pp. 416-425, Feb. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.2 , pp. 416-425
    • Tsai, F.1    Philpot, W.D.2
  • 11
    • 0034546934 scopus 로고    scopus 로고
    • Support vector machines for classification of hyperspectral data
    • J. A. Gualtieri and S. Chettri, "Support vector machines for classification of hyperspectral data," in Proc. IGARSS, 2000, pp. 813-815.
    • (2000) Proc. IGARSS , pp. 813-815
    • Gualtieri, J.A.1    Chettri, S.2
  • 12
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Feb.
    • C. Huang, L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, Feb. 2002.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 13
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machine
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machine," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 15
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Jun.
    • G. M. Foody and A. Mathur, "A relative evaluation of multiclass image classification by support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 6, pp. 1335-1343, Jun. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 17
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Mar.
    • M. Pal and P. M. Mather, "Support vector machines for classification in remote sensing," Int. J. Remote Sens., vol. 26, no. 5, pp. 1007-1011, Mar. 2005.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.5 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 18
    • 0032095724 scopus 로고    scopus 로고
    • Support vector machines for 3-D object recognition
    • Jun.
    • M. Pontil and A. Verri, "Support vector machines for 3-D object recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 6, pp. 637-646, Jun. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.6 , pp. 637-646
    • Pontil, M.1    Verri, A.2
  • 19
    • 0037002322 scopus 로고    scopus 로고
    • A suppoit vector machine approach for detection of microcalcifications
    • Dec.
    • I. El-Naqa, Y. Yongyi, M. N. Wernick, N. P. Galatsanos, and R. M. Nishikawa, "A suppoit vector machine approach for detection of microcalcifications," IEEE Trans. Med. Imag., vol. 21, no. 12, pp. 1552-1563, Dec. 2002.
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.12 , pp. 1552-1563
    • El-Naqa, I.1    Yongyi, Y.2    Wernick, M.N.3    Galatsanos, N.P.4    Nishikawa, R.M.5
  • 20
    • 0041523974 scopus 로고    scopus 로고
    • Combining support vector machine learning with the discrete cosine transform in image compression
    • Jul.
    • J. Robinson and V. Kecman, "Combining support vector machine learning with the discrete cosine transform in image compression," IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 950-958, Jul. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.4 , pp. 950-958
    • Robinson, J.1    Kecman, V.2
  • 21
    • 0344872506 scopus 로고    scopus 로고
    • Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines
    • S. Peng, Q. Xu, X. B. Ling, X. Peng, W. Du, and L. Chen, "Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines," FEBS Lett., vol. 555, pp. 358-362, 2003.
    • (2003) FEBS Lett. , vol.555 , pp. 358-362
    • Peng, S.1    Xu, Q.2    Ling, X.B.3    Peng, X.4    Du, W.5    Chen, L.6
  • 24
  • 25
    • 1542542680 scopus 로고    scopus 로고
    • A new face authentication system for memory-constrained devices
    • Nov.
    • K. Lee and H. Byun, "A new face authentication system for memory-constrained devices," IEEE Trans. Consum. Electron., vol. 49, no. 4, pp. 1214-1222, Nov. 2003.
    • (2003) IEEE Trans. Consum. Electron. , vol.49 , Issue.4 , pp. 1214-1222
    • Lee, K.1    Byun, H.2
  • 27
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 29
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Mar.
    • C. W. Hsu and C. J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 30
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, no. 7-8, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 32
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 35
    • 0032634224 scopus 로고    scopus 로고
    • Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields
    • May
    • B. C. K. Tso and P. M. Mather, "Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1255-1260, May 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.3 , pp. 1255-1260
    • Tso, B.C.K.1    Mather, P.M.2
  • 36
    • 0037560727 scopus 로고    scopus 로고
    • Multisource remote sensing data classification based on consensus and pruning
    • Apr.
    • J. A. Benediktsson and J. R. Sveinsson, "Multisource remote sensing data classification based on consensus and pruning," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 932-936, Apr. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.4 , pp. 932-936
    • Benediktsson, J.A.1    Sveinsson, J.R.2
  • 37
    • 0036199490 scopus 로고    scopus 로고
    • Road detection in spaceborne SAR images using a genetic algorithm
    • Jan.
    • B.-K. Jeon, J.-H. Jang, and K.-S. Hong, "Road detection in spaceborne SAR images using a genetic algorithm," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 1, pp. 22-29, Jan. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.1 , pp. 22-29
    • Jeon, B.-K.1    Jang, J.-H.2    Hong, K.-S.3
  • 38
    • 0041380888 scopus 로고    scopus 로고
    • A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction
    • Jun.
    • H. Yao and L. Tian, "A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1469-1478, Jun. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.6 , pp. 1469-1478
    • Yao, H.1    Tian, L.2
  • 39
    • 0032654004 scopus 로고    scopus 로고
    • Retrieval of forest parameters using a fractal-based coherent scattering model and a genetic algorithm
    • May
    • Y.-C. Lin and K. Sarabandi, "Retrieval of forest parameters using a fractal-based coherent scattering model and a genetic algorithm," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1415-1424, May 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.3 , pp. 1415-1424
    • Lin, Y.-C.1    Sarabandi, K.2
  • 40
    • 0037767682 scopus 로고    scopus 로고
    • Retrieval of water optical properties for optically deep waters using genetic algorithms
    • May
    • H. Zhan, Z. Lee, P. Shi, C. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 5, pp. 1123-1128, May 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.5 , pp. 1123-1128
    • Zhan, H.1    Lee, Z.2    Shi, P.3    Chen, C.4    Carder, K.L.5
  • 41
    • 17644402106 scopus 로고    scopus 로고
    • Change detection in multitemporal SAR images based on generalized Gaussian distribution and em algorithm
    • Y. Bazi, L. Bruzzone, and F. Melgani, "Change detection in multitemporal SAR images based on generalized Gaussian distribution and EM algorithm," in Proc. SPIE Conf. Image and Signal Processing for Remote Sensing X, 2004, vol. 5573, pp. 364-375.
    • (2004) Proc. SPIE Conf. Image and Signal Processing for Remote Sensing X , vol.5573 , pp. 364-375
    • Bazi, Y.1    Bruzzone, L.2    Melgani, F.3
  • 42
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
    • Oct.
    • G. M. Foody and A. Mathur, "Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification," Remote Sens. Environ., vol. 93, no. 1/2, pp. 107-117, Oct. 2004.
    • (2004) Remote Sens. Environ. , vol.93 , Issue.1-2 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 43
    • 4344583256 scopus 로고    scopus 로고
    • [Online] (original files); ftp://ftp.ecn.purdue.edu/biehl/PC_MultiSpec/ ThyFiles.zip (ground truth)
    • AVIRIS NW Indiana's Indian Pines 1992 Data Set. [Online]. Available: ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.lan (original files); ftp://ftp.ecn.purdue.edu/biehl/PC_MultiSpec/ThyFiles.zip (ground truth)
    • AVIRIS NW Indiana's Indian Pines 1992 Data Set
  • 45
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • May
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, May 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 46
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone, "Cross-validatory choice and assessment of statistical predictions," J. R. Statist. Soc. B, vol. 36, no. 1, pp. 111-147, 1974.
    • (1974) J. R. Statist. Soc. B , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.