메뉴 건너뛰기




Volumn 25, Issue 3, 2012, Pages 480-493

Semiconductor manufacturing process monitoring using gaussian mixture model and Bayesian method with local and nonlocal information

Author keywords

Bayesian inference; fault detection; Gaussian mixture model (GMM); local and nonlocal preserving projection (LNPP); semiconductor manufacturing process

Indexed keywords

ADVANCED PROCESS CONTROL; BATCH PROCESS; BAYESIAN INFERENCE; BAYESIAN METHODS; CONTRIBUTION ANALYSIS; ETCH PROCESS; EUCLIDEAN SPACES; GAUSSIAN MIXTURE MODEL; GLOBAL STRUCTURE; HIGH-DIMENSIONAL; LINEAR EMBEDDING; MAHALANOBIS DISTANCES; MANIFOLD LEARNING ALGORITHM; MONITORING MODELS; MULTI-MODAL; MULTIMODAL FEATURES; NON-LINEARITY; NONLOCAL; NONLOCAL INFORMATION; PROCESS DATA; PROCESS FAILURE; PROCESS FAULTS; PROCESS STATE; PROCESS VARIABLES; PRODUCT QUALITY; SEMICONDUCTOR INDUSTRY; SEMICONDUCTOR MANUFACTURING; SEMICONDUCTOR MANUFACTURING PROCESS;

EID: 84864696252     PISSN: 08946507     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSM.2012.2192945     Document Type: Article
Times cited : (48)

References (44)
  • 1
    • 0034325420 scopus 로고    scopus 로고
    • Automatic control in microelectronics manufacturing: Practices, challenges, and possibilities
    • Nov.
    • T. F. Edgar, S. W. Butler, W. J. Campbell, C. Pfeiffer, C. Bode, S. B. Hwang, K. S. Balakrishnan, and J. Hahn, "Automatic control in microelectronics manufacturing: Practices, challenges, and possibilities," Automatica, vol. 36, no. 11, pp. 1567-1603, Nov. 2000.
    • (2000) Automatica , vol.36 , Issue.11 , pp. 1567-1603
    • Edgar, T.F.1    Butler, S.W.2    Campbell, W.J.3    Pfeiffer, C.4    Bode, C.5    Hwang, S.B.6    Balakrishnan, K.S.7    Hahn, J.8
  • 2
    • 52449116108 scopus 로고    scopus 로고
    • Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
    • Nov.
    • Q. P. He and J. Wang, "Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes," IEEE Trans. Semicond. Manuf., vol. 20, no. 4, pp. 345-354, Nov. 2007.
    • (2007) IEEE Trans. Semicond. Manuf. , vol.20 , Issue.4 , pp. 345-354
    • He, Q.P.1    Wang, J.2
  • 4
    • 28244475768 scopus 로고    scopus 로고
    • Semiconductor manufacturing process control and monitoring: A fabwide framework
    • Mar.
    • S. J. Qin, G. Cherry, R. Good, J. Wang, and C. A. Harrison, "Semiconductor manufacturing process control and monitoring: A fabwide framework," J. Process Control, vol. 16, no. 3, pp. 179-191, Mar. 2006.
    • (2006) J. Process Control , vol.16 , Issue.3 , pp. 179-191
    • Qin, S.J.1    Cherry, G.2    Good, R.3    Wang, J.4    Harrison, C.A.5
  • 5
    • 84864648609 scopus 로고    scopus 로고
    • Statistical fault detection of batch processes in semiconductor manufacturing
    • presented at the San Francisco, CA, Nov.
    • Q. P. He and J. Wang, "Statistical fault detection of batch processes in semiconductor manufacturing," presented at the AIChE Annual Meeting, San Francisco, CA, Nov. 2006.
    • (2006) AIChE Annual Meeting
    • He, Q.P.1    Wang, J.2
  • 6
    • 33646731122 scopus 로고    scopus 로고
    • Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis
    • May
    • G. A. Cherry and S. J. Qin, "Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis," IEEE Trans. Semicond. Manuf., vol. 19, no. 2, pp. 159-172, May 2006.
    • (2006) IEEE Trans. Semicond. Manuf. , vol.19 , Issue.2 , pp. 159-172
    • Cherry, G.A.1    Qin, S.J.2
  • 8
    • 64149085513 scopus 로고    scopus 로고
    • Semiconductor process monitoring and fault detection with recursive multiway PCA based on a combined index
    • Sep.
    • G. Cherry, R. Good, and S. J. Qin, "Semiconductor process monitoring and fault detection with recursive multiway PCA based on a combined index," in Proc. 14th AEC/APC Symp., Sep. 2002, pp. 130-139.
    • (2002) Proc. 14th AEC/APC Symp. , pp. 130-139
    • Cherry, G.1    Good, R.2    Qin, S.J.3
  • 9
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Jul.
    • B. M. Wise, N. B. Gallagher, S. W. Butler, D. D. White, Jr., and G. G. Barna, "A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process," J. Chemometrics, vol. 13, nos. 3-4, pp. 379-396, Jul. 1999.
    • (1999) J. Chemometrics , vol.13 , Issue.3-4 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White Jr., D.D.4    Barna, G.G.5
  • 10
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Dec.
    • B. M. Wise and N. B. Gallagher, "The process chemometrics approach to process monitoring and fault detection," J. Process Control, vol. 6, no. 6, pp. 329-348, Dec. 1996.
    • (1996) J. Process Control , vol.6 , Issue.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 11
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Feb.
    • P. Nomikos and J. MacGregor, "Multivariate SPC charts for monitoring batch processes," Technometrics, vol. 37, no. 1, pp. 41-59, Feb. 1995.
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.2
  • 12
    • 0034247164 scopus 로고    scopus 로고
    • Fault detection of plasma etchers using optical emission spectra
    • Aug.
    • H. Yue, S. Qin, R. Markle, C. Nauert, and M. Gatto, "Fault detection of plasma etchers using optical emission spectra," IEEE Trans. Semicond. Manuf., vol. 13, no. 3, pp. 374-385, Aug. 2000.
    • (2000) IEEE Trans. Semicond. Manuf. , vol.13 , Issue.3 , pp. 374-385
    • Yue, H.1    Qin, S.2    Markle, R.3    Nauert, C.4    Gatto, M.5
  • 13
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principal component analysis models
    • Sep.
    • S. J. Zhao, J. Zhang, and Y. M. Xu, "Monitoring of processes with multiple operating modes through multiple principal component analysis models," Ind. Eng. Chem. Res., vol. 43, no. 22, pp. 7025-7035, Sep. 2004.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , Issue.22 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 14
    • 79951562490 scopus 로고    scopus 로고
    • Adaptive Mahalanobis distance and knearest neighbor rule for fault detection in semiconductor manufacturing
    • Feb.
    • G. Verdier and A. Ferreira, "Adaptive Mahalanobis distance and knearest neighbor rule for fault detection in semiconductor manufacturing," IEEE Trans. Semicond. Manuf., vol. 24, no. 1, pp. 59-68, Feb. 2011.
    • (2011) IEEE Trans. Semicond. Manuf. , vol.24 , Issue.1 , pp. 59-68
    • Verdier, G.1    Ferreira, A.2
  • 15
    • 72149111135 scopus 로고    scopus 로고
    • Fault detection and diagnosis in process data using one-class support vector machines
    • Dec.
    • S. Mahadevan and S. Shah, "Fault detection and diagnosis in process data using one-class support vector machines," J. Process Control, vol. 19, no. 10, pp. 1627-1639, Dec. 2009.
    • (2009) J. Process Control , vol.19 , Issue.10 , pp. 1627-1639
    • Mahadevan, S.1    Shah, S.2
  • 16
    • 76849114320 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations
    • Feb.
    • P. E. P. Odiowei and Y. Cao, "Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations," IEEE Trans. Ind. Inform., vol. 6, no. 1, pp. 36-45, Feb. 2010.
    • (2010) IEEE Trans. Ind. Inform. , vol.6 , Issue.1 , pp. 36-45
    • Odiowei, P.E.P.1    Cao, Y.2
  • 17
    • 33750172858 scopus 로고    scopus 로고
    • Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring
    • Nov.
    • T. Chen, J. Morris, and E. Martin, "Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring," Appl. Statist., vol. 55, no. 5, pp. 699-715, Nov. 2006.
    • (2006) Appl. Statist. , vol.55 , Issue.5 , pp. 699-715
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 19
    • 77649189520 scopus 로고    scopus 로고
    • On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
    • Apr.
    • T. Chen and J. Zhang, "On-line multivariate statistical monitoring of batch processes using Gaussian mixture model," Comput. Chem. Eng., vol. 34, no. 4, pp. 500-507, Apr. 2010.
    • (2010) Comput. Chem. Eng. , vol.34 , Issue.4 , pp. 500-507
    • Chen, T.1    Zhang, J.2
  • 20
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Jul.
    • J. Yu and S. J. Qin, "Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models," AICHE J., vol. 54, no. 7, pp. 1811-1829, Jul. 2008.
    • (2008) AICHE J. , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 21
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec.
    • J. Tenenbaum, D. D. Silva, and J. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, D.D.2    Langford, J.3
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec.
    • S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 23
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Jun.
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Computat., vol. 15, no. 6, pp. 1373-1396, Jun. 2003.
    • (2003) Neural Computat. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 25
    • 79959985541 scopus 로고    scopus 로고
    • Global-local structure analysis model and its application for fault detection and identification
    • Apr.
    • M. Zhang, Z. Ge, Z. Song, and R. Fu, "Global-local structure analysis model and its application for fault detection and identification," Ind. Eng. Chem. Res., vol. 50, no. 11, pp. 6837-6848, Apr. 2011.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , Issue.11 , pp. 6837-6848
    • Zhang, M.1    Ge, Z.2    Song, Z.3    Fu, R.4
  • 26
    • 44649092618 scopus 로고    scopus 로고
    • Multivariate statistical process control based on multiway locality preserving projections
    • Aug.-Sep.
    • K. Hu and J. Yuan, "Multivariate statistical process control based on multiway locality preserving projections," J. Process Control, vol. 18, nos. 7-8, pp. 797-807, Aug.-Sep. 2008.
    • (2008) J. Process Control , vol.18 , Issue.7-8 , pp. 797-807
    • Hu, K.1    Yuan, J.2
  • 27
    • 34047237342 scopus 로고    scopus 로고
    • Unsupervised discriminant projection analysis for feature extraction
    • J. Yang, D. Zhang, Z. Jin, and J. Yang, "Unsupervised discriminant projection analysis for feature extraction," in Proc. 18th ICPR, 2006, pp. 904-907.
    • (2006) Proc. 18th ICPR , pp. 904-907
    • Yang, J.1    Zhang, D.2    Jin, Z.3    Yang, J.4
  • 28
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Aug.
    • H. H. Yue and S. J. Qin, "Reconstruction-based fault identification using a combined index," Ind. Eng. Chem. Res., vol. 40, no. 20, pp. 4403-4414, Aug. 2001.
    • (2001) Ind. Eng. Chem. Res. , vol.40 , Issue.20 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 29
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Oct.
    • R. Dunia, S. J. Qin, T. F. Edgar, and T. J. McAvoy, "Identification of faulty sensors using principal component analysis," AIChE J., vol. 42, no. 10, pp. 2797-2812, Oct. 1996.
    • (1996) AIChE J. , vol.42 , Issue.10 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 30
    • 78149280345 scopus 로고    scopus 로고
    • A branch and bound method for isolation of faulty variables through missing variable analysis
    • Dec.
    • V. Kariwala, P.-E. Odiowei, Y. Cao, and T. Chen, "A branch and bound method for isolation of faulty variables through missing variable analysis," J. Process Control, vol. 20, no. 10, pp. 1198-1206, Dec. 2010.
    • (2011) J. Process Control , vol.20 , Issue.10 , pp. 1198-1206
    • Kariwala, V.1    Odiowei, P.-E.2    Cao, Y.3    Chen, T.4
  • 31
    • 60249095677 scopus 로고    scopus 로고
    • Probabilistic contribution analysis for statistical process monitoring: A missing variable approach
    • Apr.
    • T. Chen and Y. Sun, "Probabilistic contribution analysis for statistical process monitoring: A missing variable approach," Control Eng. Practice, vol. 17, no. 4, pp. 469-477, Apr. 2009.
    • (2009) Control Eng. Practice , vol.17 , Issue.4 , pp. 469-477
    • Chen, T.1    Sun, Y.2
  • 33
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood estimation from incomplete data via the EM algorithm," J. Roy. Statistic Soc., vol. 30, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Statistic Soc. , vol.30 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 34
    • 3042585857 scopus 로고    scopus 로고
    • Recursive unsupervised learning of finite mixture models,"
    • May
    • Z. Zivkovic and F. V. D. Heijen, "Recursive unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Learning, vol. 26, no. 5, pp. 651-656, May 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Learning , vol.26 , Issue.5 , pp. 651-656
    • Zivkovic, Z.1    Heijen, F.V.D.2
  • 35
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec.
    • H. Akaike, "A new look at the statistical model identification, " IEEE Trans. Autom. Control, vol. 19, no. 6, pp. 716-723, Dec. 1974.
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 36
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Mar.
    • G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, no. 2, pp. 461-464, Mar. 1978.
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 39
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: A missing link in multivariate quality control
    • P. Miller, R. E. Swanson, and C. F. Heckler, "Contribution plots: A missing link in multivariate quality control," Int. J. Appl. Math. Comput. Sci., vol. 8, no. 4, pp. 775-792, 1998.
    • (1998) Int. J. Appl. Math. Comput. Sci. , vol.8 , Issue.4 , pp. 775-792
    • Miller, P.1    Swanson, R.E.2    Heckler, C.F.3
  • 40
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Sep.
    • S. Valle, W. Li, and S. J. Qin, "Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods," Ind. Eng. Chem. Res., vol. 38, no. 11, pp. 4389-4401, Sep. 1999.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , Issue.11 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 41
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • Sep.
    • M. Tamura and S. Tsujita, "A study on the number of principal components and sensitivity of fault detection using PCA," Comput. Chem. Eng., vol. 31, no. 9, pp. 1035-1046, Sep. 2007.
    • (2007) Comput. Chem. Eng. , vol.31 , Issue.9 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 42
    • 78650046728 scopus 로고    scopus 로고
    • Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch process
    • Jan.
    • Q. P. He and J. Wang, "Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch process," AIChE J., vol. 57, no. 1, pp. 107-121, Jan. 2011.
    • (2011) AIChE J. , vol.57 , Issue.1 , pp. 107-121
    • He, Q.P.1    Wang, J.2
  • 44
    • 78651226775 scopus 로고    scopus 로고
    • Automatic choice of the number of nearest neighbors in locally linear embedding
    • V. A. Juliana, A. M. Andrés, D. S. Genaro, and C. D. Germán, "Automatic choice of the number of nearest neighbors in locally linear embedding," in Proc. 14th CIARP, vol. 5856. 2009, pp. 77-84.
    • (2009) Proc. 14th CIARP , vol.5856 , pp. 77-84
    • Juliana, V.A.1    Andrés, A.M.2    Genaro, D.S.3    Germán, C.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.