메뉴 건너뛰기




Volumn 19, Issue 10, 2009, Pages 1627-1639

Fault detection and diagnosis in process data using one-class support vector machines

Author keywords

Fault detection; Fault diagnosis; Support vector machines

Indexed keywords

1-CLASS SVM; APPROPRIATE DISTANCES; CONVENTIONAL TECHNIQUES; DATA SETS; DETECTION AND DIAGNOSIS; DETECTION LATENCY; DISTANCE METRICS; ETCH PROCESS; FALSE ALARM RATE; FAULT DETECTION AND DIAGNOSIS; FAULT DETECTION RATE; FAULT DIAGNOSIS; FEATURE SELECTION METHODS; FEATURE SPACE; IN-PROCESS; NEW APPROACHES; NON-LINEAR; ONE-CLASS SUPPORT VECTOR MACHINE; PERFORMANCE MEASURE; PRINCIPAL COMPONENTS ANALYSIS; RECURSIVE FEATURE ELIMINATION; SVM-RFE; TENNESSEE EASTMAN;

EID: 72149111135     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2009.07.011     Document Type: Article
Times cited : (349)

References (31)
  • 1
    • 33747792355 scopus 로고    scopus 로고
    • Automatic detection and quantification of stiction in control valves
    • Choudhury M.S., Shah S., Thornhill N., and Shook D.S. Automatic detection and quantification of stiction in control valves. Control Engineering Practice 14 12 (2006) 1395-1412
    • (2006) Control Engineering Practice , vol.14 , Issue.12 , pp. 1395-1412
    • Choudhury, M.S.1    Shah, S.2    Thornhill, N.3    Shook, D.S.4
  • 2
    • 34547141675 scopus 로고    scopus 로고
    • Advances and new directions in plant-wide disturbance detection and diagnosis
    • Thornhill N.F., and Horch A. Advances and new directions in plant-wide disturbance detection and diagnosis. Control Engineering Practice 15 10 (2007) 1196-1206
    • (2007) Control Engineering Practice , vol.15 , Issue.10 , pp. 1196-1206
    • Thornhill, N.F.1    Horch, A.2
  • 4
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E., Chiang L., and Braatz R. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 51 (2000) 81-93
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , pp. 81-93
    • Russell, E.1    Chiang, L.2    Braatz, R.3
  • 5
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J., Qin S.J., and Lee I.-B. Fault detection and diagnosis based on modified independent component analysis. AIChE Journal 52 (2006) 3501-3514
    • (2006) AIChE Journal , vol.52 , pp. 3501-3514
    • Lee, J.1    Qin, S.J.2    Lee, I.-B.3
  • 7
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • Lee J., Qin S.J., and Lee I.-B. Fault detection of non-linear processes using kernel independent component analysis. Canadian Journal of Chemical Engineering 85 (2007) 526-536
    • (2007) Canadian Journal of Chemical Engineering , vol.85 , pp. 526-536
    • Lee, J.1    Qin, S.J.2    Lee, I.-B.3
  • 8
    • 34748873203 scopus 로고    scopus 로고
    • Plant-wide detection and diagnosis using correspondence analysis
    • Detroja K., Gudi R., and Patwardhan S. Plant-wide detection and diagnosis using correspondence analysis. Control Engineering Practice 15 12 (2007) 1468-1483
    • (2007) Control Engineering Practice , vol.15 , Issue.12 , pp. 1468-1483
    • Detroja, K.1    Gudi, R.2    Patwardhan, S.3
  • 10
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 17 (2003) 480-502
    • (2003) Journal of Chemometrics , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 11
    • 0029703047 scopus 로고    scopus 로고
    • Experiences with industrial applications of projection methods for multivariate statistical process control
    • Kourti T., Lee J., and MacGregor J. Experiences with industrial applications of projection methods for multivariate statistical process control. Computers and Chemical Engineering 20 (1996) S745-S750
    • (1996) Computers and Chemical Engineering , vol.20
    • Kourti, T.1    Lee, J.2    MacGregor, J.3
  • 12
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., and MacGregor J. Monitoring batch processes using multiway principal component analysis. AIChE Journal 40 (1994) 1361-1375
    • (1994) AIChE Journal , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.2
  • 13
    • 0033284825 scopus 로고    scopus 로고
    • Statistical process and controller performance monitoring: A tutorial on current methods and future direction
    • A. Cinar, C. Undey, Statistical process and controller performance monitoring: a tutorial on current methods and future direction, in: Proceedings of American Control Conference, vol. 4, 1999, pp. 2625-2630.
    • (1999) Proceedings of American Control Conference , vol.4 , pp. 2625-2630
    • Cinar, A.1    Undey, C.2
  • 15
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate processes using state space modeling
    • Simoglou A., Martin E., and Morris A. Statistical performance monitoring of dynamic multivariate processes using state space modeling. Computers and Chemical Engineering 26 (2002) 909-920
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 909-920
    • Simoglou, A.1    Martin, E.2    Morris, A.3
  • 19
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 21
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • Keerthi S.S., and Chih-Ten L. Asymptotic behaviors of support vector machines with gaussian kernel. Neural computation 15 (2003) 1667-1689
    • (2003) Neural computation , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Chih-Ten, L.2
  • 23
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Wise B.M., Gallagher N.B., Butler S., Jr. D.W., and Barna G.G. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics 13 (1999) 379-396
    • (1999) Journal of Chemometrics , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.3    Jr., D.W.4    Barna, G.G.5
  • 24
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston S.B.J., and Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 (2002) 389-422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, S.B.J.2    Vapnik, V.3
  • 25
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., and Vogel E.F. A plant-wide industrial process control problem. Computers & Chemical Engineering 17 3 (1993) 245-255
    • (1993) Computers & Chemical Engineering , vol.17 , Issue.3 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 26
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman P.R., and Georgakis C. Plant-wide control of the Tennessee Eastman problem. Computers and Chemical Engineering 19 3 (1995) 321-331
    • (1995) Computers and Chemical Engineering , vol.19 , Issue.3 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 28
    • 53349175658 scopus 로고    scopus 로고
    • Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM)
    • Zhang Y. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM). Industrial & Engineering Chemistry Research 47 18 (2008) 6961-6971
    • (2008) Industrial & Engineering Chemistry Research , vol.47 , Issue.18 , pp. 6961-6971
    • Zhang, Y.1
  • 29
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • Tamura M., and Tsujita S. A study on the number of principal components and sensitivity of fault detection using PCA. Computers & Chemical Engineering 31 9 (2007) 1035-1046
    • (2007) Computers & Chemical Engineering , vol.31 , Issue.9 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 30
    • 72149084974 scopus 로고    scopus 로고
    • Metal Etch Data for Fault Detection Evaluation, Eigenvector Research Inc., 1999.
    • Metal Etch Data for Fault Detection Evaluation, Eigenvector Research Inc., 1999.
  • 31
    • 52449116108 scopus 로고    scopus 로고
    • Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
    • He Q., and Wang J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing 20 4 (2007) 345-354
    • (2007) IEEE Transactions on Semiconductor Manufacturing , vol.20 , Issue.4 , pp. 345-354
    • He, Q.1    Wang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.