-
3
-
-
0037039540
-
On-line batch process monitoring using dynamic PCA and dynamic PLS models
-
Chen J.H., and Liu K.C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science 57 (2002) 63-75
-
(2002)
Chemical Engineering Science
, vol.57
, pp. 63-75
-
-
Chen, J.H.1
Liu, K.C.2
-
5
-
-
33750172858
-
Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring
-
Chen T., Morris J., and Martin E. Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring. Journal of the Royal Statistical Society C: Applied Statistics 55 (2006) 699-715
-
(2006)
Journal of the Royal Statistical Society C: Applied Statistics
, vol.55
, pp. 699-715
-
-
Chen, T.1
Morris, J.2
Martin, E.3
-
6
-
-
2342521341
-
Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
-
Choi S.W., Park J.H., and Lee I.-B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Computers and Chemical Engineering 28 (2004) 1377-1387
-
(2004)
Computers and Chemical Engineering
, vol.28
, pp. 1377-1387
-
-
Choi, S.W.1
Park, J.H.2
Lee, I.-B.3
-
8
-
-
0030269512
-
Identification of faulty sensors using PCA
-
Dunia R., Qin S., Edgar T., and McAvoy T. Identification of faulty sensors using PCA. AIChE Journal 42 (1996) 2797-2812
-
(1996)
AIChE Journal
, vol.42
, pp. 2797-2812
-
-
Dunia, R.1
Qin, S.2
Edgar, T.3
McAvoy, T.4
-
10
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
-
Kano M., and Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers and Chemical Engineering 32 (2008) 12-24
-
(2008)
Computers and Chemical Engineering
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
11
-
-
2442495227
-
Fault detection of batch processes using multiway kernel principal component analysis
-
Lee J.-M., Yoo C., and Lee I.-B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering 28 (2004) 1837-1847
-
(2004)
Computers and Chemical Engineering
, vol.28
, pp. 1837-1847
-
-
Lee, J.-M.1
Yoo, C.2
Lee, I.-B.3
-
12
-
-
30544445406
-
Two-dimensional dynamic PCA for batch process monitoring
-
Lu N., Yao Y., and Gao F. Two-dimensional dynamic PCA for batch process monitoring. AIChE Journal 51 (2005) 3300-3304
-
(2005)
AIChE Journal
, vol.51
, pp. 3300-3304
-
-
Lu, N.1
Yao, Y.2
Gao, F.3
-
13
-
-
0030525683
-
Non-parametric confidence bounds for process performance monitoring charts
-
Martin E.B., and Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control 6 (1996) 349-358
-
(1996)
Journal of Process Control
, vol.6
, pp. 349-358
-
-
Martin, E.B.1
Morris, A.J.2
-
14
-
-
0032657437
-
Manufacturing performance enhancement through multivariate statistical process control
-
Martin E.B., Morris A.J., and Kiparrisides C. Manufacturing performance enhancement through multivariate statistical process control. Annual Reviews in Control 23 (1999) 35-44
-
(1999)
Annual Reviews in Control
, vol.23
, pp. 35-44
-
-
Martin, E.B.1
Morris, A.J.2
Kiparrisides, C.3
-
17
-
-
0029252734
-
Multivariate SPC charts for monitoring batch processes
-
Nomikos P., and MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 37 (1995) 41-59
-
(1995)
Technometrics
, vol.37
, pp. 41-59
-
-
Nomikos, P.1
MacGregor, J.F.2
-
18
-
-
0242354134
-
Statistical process monitoring: Basics and beyond
-
Qin S.J. Statistical process monitoring: Basics and beyond. Journal of Chemometrics 17 (2003) 480-502
-
(2003)
Journal of Chemometrics
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
20
-
-
0031145293
-
Wavelet-based density estimation and application to process monitoring
-
Safavi A.A., Chen J., and Romagnoli J.A. Wavelet-based density estimation and application to process monitoring. AIChE Journal 43 (1997) 1227-1241
-
(1997)
AIChE Journal
, vol.43
, pp. 1227-1241
-
-
Safavi, A.A.1
Chen, J.2
Romagnoli, J.A.3
-
21
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 (1978) 461-464
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
22
-
-
23044496829
-
Multivariate statistical process control using mixture modeling
-
Thissen U., Swierenga H., de Weijer A.P., Wehrens R., Melssen W.J., and Buydens L.M.C. Multivariate statistical process control using mixture modeling. Journal of Chemometrics 19 (2005) 23-31
-
(2005)
Journal of Chemometrics
, vol.19
, pp. 23-31
-
-
Thissen, U.1
Swierenga, H.2
de Weijer, A.P.3
Wehrens, R.4
Melssen, W.J.5
Buydens, L.M.C.6
-
24
-
-
0001067412
-
A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
-
Wise B.M., Gallagher N.B., Butler S.W., White D.D., and Barna G.G. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics 13 (1999) 379-396
-
(1999)
Journal of Chemometrics
, vol.13
, pp. 379-396
-
-
Wise, B.M.1
Gallagher, N.B.2
Butler, S.W.3
White, D.D.4
Barna, G.G.5
-
25
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., and Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE Journal 54 (2008) 1811-1829
-
(2008)
AIChE Journal
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
26
-
-
0035802262
-
Reconstruction based fault identification using a combined index
-
Yue H., and Qin S. Reconstruction based fault identification using a combined index. Industrial and Engineering Chemistry Research 40 (2001) 4403-4414
-
(2001)
Industrial and Engineering Chemistry Research
, vol.40
, pp. 4403-4414
-
-
Yue, H.1
Qin, S.2
|