메뉴 건너뛰기




Volumn 34, Issue 4, 2010, Pages 500-507

On-line multivariate statistical monitoring of batch processes using Gaussian mixture model

Author keywords

Batch processes; Fault detection and diagnosis; Mixture model; Multivariate statistical process monitoring; Principal component analysis; Probability density estimation

Indexed keywords

BATCH PROCESS; FAULT DETECTION AND DIAGNOSIS; MIXTURE MODEL; MULTIVARIATE STATISTICAL PROCESS MONITORING; PROBABILITY DENSITY ESTIMATION;

EID: 77649189520     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2009.08.007     Document Type: Article
Times cited : (100)

References (26)
  • 3
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS models
    • Chen J.H., and Liu K.C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science 57 (2002) 63-75
    • (2002) Chemical Engineering Science , vol.57 , pp. 63-75
    • Chen, J.H.1    Liu, K.C.2
  • 5
    • 33750172858 scopus 로고    scopus 로고
    • Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring
    • Chen T., Morris J., and Martin E. Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring. Journal of the Royal Statistical Society C: Applied Statistics 55 (2006) 699-715
    • (2006) Journal of the Royal Statistical Society C: Applied Statistics , vol.55 , pp. 699-715
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 6
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., and Lee I.-B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Computers and Chemical Engineering 28 (2004) 1377-1387
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.-B.3
  • 8
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using PCA
    • Dunia R., Qin S., Edgar T., and McAvoy T. Identification of faulty sensors using PCA. AIChE Journal 42 (1996) 2797-2812
    • (1996) AIChE Journal , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.2    Edgar, T.3    McAvoy, T.4
  • 10
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
    • Kano M., and Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers and Chemical Engineering 32 (2008) 12-24
    • (2008) Computers and Chemical Engineering , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 11
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee J.-M., Yoo C., and Lee I.-B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering 28 (2004) 1837-1847
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1837-1847
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 12
    • 30544445406 scopus 로고    scopus 로고
    • Two-dimensional dynamic PCA for batch process monitoring
    • Lu N., Yao Y., and Gao F. Two-dimensional dynamic PCA for batch process monitoring. AIChE Journal 51 (2005) 3300-3304
    • (2005) AIChE Journal , vol.51 , pp. 3300-3304
    • Lu, N.1    Yao, Y.2    Gao, F.3
  • 13
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E.B., and Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control 6 (1996) 349-358
    • (1996) Journal of Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 14
    • 0032657437 scopus 로고    scopus 로고
    • Manufacturing performance enhancement through multivariate statistical process control
    • Martin E.B., Morris A.J., and Kiparrisides C. Manufacturing performance enhancement through multivariate statistical process control. Annual Reviews in Control 23 (1999) 35-44
    • (1999) Annual Reviews in Control , vol.23 , pp. 35-44
    • Martin, E.B.1    Morris, A.J.2    Kiparrisides, C.3
  • 17
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., and MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 37 (1995) 41-59
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 18
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin S.J. Statistical process monitoring: Basics and beyond. Journal of Chemometrics 17 (2003) 480-502
    • (2003) Journal of Chemometrics , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 20
    • 0031145293 scopus 로고    scopus 로고
    • Wavelet-based density estimation and application to process monitoring
    • Safavi A.A., Chen J., and Romagnoli J.A. Wavelet-based density estimation and application to process monitoring. AIChE Journal 43 (1997) 1227-1241
    • (1997) AIChE Journal , vol.43 , pp. 1227-1241
    • Safavi, A.A.1    Chen, J.2    Romagnoli, J.A.3
  • 21
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Wise B.M., Gallagher N.B., Butler S.W., White D.D., and Barna G.G. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics 13 (1999) 379-396
    • (1999) Journal of Chemometrics , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White, D.D.4    Barna, G.G.5
  • 25
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., and Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE Journal 54 (2008) 1811-1829
    • (2008) AIChE Journal , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 26
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction based fault identification using a combined index
    • Yue H., and Qin S. Reconstruction based fault identification using a combined index. Industrial and Engineering Chemistry Research 40 (2001) 4403-4414
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , pp. 4403-4414
    • Yue, H.1    Qin, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.