메뉴 건너뛰기




Volumn 7, Issue 1, 2012, Pages 147-196

On essential topics of BYY harmony learning: Current status, challenging issues, and gene analysis applications

Author keywords

automatic model selection; Bayesian Ying Yang (BYY) harmony learning; exome sequencing analysis; Gaussian mixture; gene transcriptional regulation; genome wide association; harmony functional; hidden Markov model (HMM) gated temporal factor analysis; hierarchical Gaussian mixture; manifold learning; semi blind learning; semi supervised learning

Indexed keywords


EID: 84863267071     PISSN: 16733460     EISSN: 16733584     Source Type: Journal    
DOI: 10.1007/s11460-012-0190-2     Document Type: Article
Times cited : (20)

References (95)
  • 1
    • 77956483883 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system, best harmony learning, and five action circling. A special issue on Emerging Themes on Information Theory and Bayesian Approach
    • Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. A special issue on Emerging Themes on Information Theory and Bayesian Approach. Frontiers of Electrical and Electronic Engineering in China, 2010, 5(3): 281-328.
    • (2010) Frontiers of Electrical and Electronic Engineering in China , vol.5 , Issue.3 , pp. 281-328
    • Xu, L.1
  • 2
    • 0005906827 scopus 로고
    • Bayesian-Kullback coupled YING-YANG machines: Unified learning and new results on vector quantization
    • (A further version in NIPS8. In: Touretzky D S, et al. eds. Cambridge: MIT Press, 444-450)
    • Xu L. Bayesian-Kullback coupled YING-YANG machines: Unified learning and new results on vector quantization. In: Proceedings of the International Conference on Neural Information Processing. 1995, 977-988 (A further version in NIPS8. In: Touretzky D S, et al. eds. Cambridge: MIT Press, 444-450).
    • (1995) Proceedings of the International Conference on Neural Information Processing , pp. 977-988
    • Xu, L.1
  • 3
    • 79952291896 scopus 로고    scopus 로고
    • Codimensional matrix pairing perspective of BYY harmony learning: Hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (A)
    • Xu L. Codimensional matrix pairing perspective of BYY harmony learning: Hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (A). Frontiers of Electrical and Electronic Engineering in China, 2011, 6(1): 86-119.
    • (2011) Frontiers of Electrical and Electronic Engineering in China , vol.6 , Issue.1 , pp. 86-119
    • Xu, L.1
  • 4
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor autodetermination
    • Xu L. Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor autodetermination. IEEE Transactions on Neural Networks, 2004, 15(4): 885-902.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.4 , pp. 885-902
    • Xu, L.1
  • 5
    • 3843066216 scopus 로고    scopus 로고
    • Temporal BYY encoding, Markovian state spaces, and space dimension determination
    • Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks, 2004, 15(5): 1276-1295.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1276-1295
    • Xu, L.1
  • 6
    • 46049101030 scopus 로고    scopus 로고
    • Bayesian Ying Yang system, best harmony learning, and Gaussian manifold based family
    • In: Zurada et al. eds. Lecture Notes in Computer Science
    • Xu L. Bayesian Ying Yang system, best harmony learning, and Gaussian manifold based family. In: Zurada et al. eds. Computational Intelligence: Research Frontiers, WCCI2008 Plenary/Invited Lectures. Lecture Notes in Computer Science, 2008, 5050: 48-78.
    • (2008) Computational Intelligence: Research Frontiers, WCCI2008 Plenary/Invited Lectures , Issue.5050 , pp. 48-78
    • Xu, L.1
  • 7
    • 79958731437 scopus 로고    scopus 로고
    • Learning Gaussian mixture with automatic model selection: A comparative study on three Bayesian related approaches. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B)
    • Shi L, Tu S K, Xu L. Learning Gaussian mixture with automatic model selection: A comparative study on three Bayesian related approaches. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B). Frontiers of Electrical and Electronic Engineering in China, 2011, 6(2): 215-244.
    • (2011) Frontiers of Electrical and Electronic Engineering in China , vol.6 , Issue.2 , pp. 215-244
    • Shi, L.1    Tu, S.K.2    Xu, L.3
  • 10
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620-630.
    • (1957) Physical Review , vol.106 , Issue.4 , pp. 620-630
    • Jaynes, E.T.1
  • 11
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics, 1978, 6(2): 461-464.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 12
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay D J C. A practical Bayesian framework for backpropagation networks. Neural Computation, 1992, 4(3): 448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 14
    • 34247869715 scopus 로고    scopus 로고
    • Variational approximations in Bayesian model selection for finite mixture distributions
    • McGrory C A, Titterington D M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis, 2007, 51(11): 5352-5367.
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.11 , pp. 5352-5367
    • McGrory, C.A.1    Titterington, D.M.2
  • 15
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind separation of sources
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Cambridge: MIT Press
    • Amari S I, Cichocki A, Yang H. A new learning algorithm for blind separation of sources. In: Touretzky D S, Mozer M C, Hasselmo M E, eds. Advances in Neural Information Processing System 8. Cambridge: MIT Press, 1996, 757-763.
    • (1996) Advances in Neural Information Processing System 8 , pp. 757-763
    • Amari, S.I.1    Cichocki, A.2    Yang, H.3
  • 16
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6): 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 17
    • 77956473522 scopus 로고    scopus 로고
    • Independent subspaces
    • J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey, PA: IGI Global
    • Xu L. Independent subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. Hershey, PA: IGI Global, 2008, 903-912.
    • (2008) Encyclopedia of Artificial Intelligence , pp. 903-912
    • Xu, L.1
  • 21
    • 33845365903 scopus 로고    scopus 로고
    • A Gibbs sampler for the identification of gene expression and network connectivity consistency
    • Brynildsen M P, Tran L M, Liao J C. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics, 2006, 22(24): 3040-3046.
    • (2006) Bioinformatics , vol.22 , Issue.24 , pp. 3040-3046
    • Brynildsen, M.P.1    Tran, L.M.2    Liao, J.C.3
  • 22
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review, 1984, 26(2): 195-239.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 23
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1): 129-151.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 24
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Transactions on Neural Networks, 1993, 4(4): 636-649.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 25
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models
    • Xu L. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models. International Journal of Neural Systems, 2001, 11(1): 43-69.
    • (2001) International Journal of Neural Systems , vol.11 , Issue.1 , pp. 43-69
    • Xu, L.1
  • 26
    • 0006005149 scopus 로고    scopus 로고
    • Bayesian Ying Yang system and theory as a unified statistical learning approach: (I) Unsupervised and semi-unsupervised learning
    • In: Amari S, Kassabov N, eds. Springer-Verlag
    • Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (I) Unsupervised and semi-unsupervised learning. In: Amari S, Kassabov N, eds. Brain-like Computing and Intelligent Information Systems. Springer-Verlag, 1997, 241-274.
    • (1997) Brain-like Computing and Intelligent Information Systems , pp. 241-274
    • Xu, L.1
  • 28
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 32
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace C S, Dowe D L. Minimum message length and Kolmogorov complexity. Computer Journal, 1999, 42(4): 270-283.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.S.1    Dowe, D.L.2
  • 33
    • 0012671071 scopus 로고    scopus 로고
    • Bayesian Ying Yang system and theory as a unified statistical learning approach (III): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning
    • In: Wong K M, et al. eds, Springer-Verlag
    • Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach (III): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning. In: Wong K M, et al. eds. Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective. Springer-Verlag, 1997, 43-60.
    • (1997) Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective , pp. 43-60
    • Xu, L.1
  • 34
    • 79958741453 scopus 로고    scopus 로고
    • Parameterizations make different model selections: Empirical findings from factor analysis. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B)
    • Tu S K, Xu L. Parameterizations make different model selections: Empirical findings from factor analysis. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B). Frontiers of Electrical and Electronic Engineering in China, 2011, 6(2): 256-274.
    • (2011) Frontiers of Electrical and Electronic Engineering in China , vol.6 , Issue.2 , pp. 256-274
    • Tu, S.K.1    Xu, L.2
  • 35
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
    • Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on mixture models. Neural Networks, 2002, (8-9): 1125-1151.
    • (2002) Neural Networks , Issue.8-9 , pp. 1125-1151
    • Xu, L.1
  • 36
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • Cambridge, MA: MIT Press
    • Ghahramani Z, Beal M. Variational inference for Bayesian mixtures of factor analysers. Advances in neural information processing systems 12. Cambridge, MA: MIT Press, 2000, 449-455.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.2
  • 37
    • 0035345442 scopus 로고    scopus 로고
    • Bayesian analysis of mixtures of factor analyzers
    • Utsugi A, Kumagai T. Bayesian analysis of mixtures of factor analyzers. Neural Computation, 2001, 13(5): 993-1002.
    • (2001) Neural Computation , vol.13 , Issue.5 , pp. 993-1002
    • Utsugi, A.1    Kumagai, T.2
  • 40
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space, and generalized APT financial analyses
    • Xu L. BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Transactions on Neural Networks, 2001, 12(4): 822-849.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 41
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2007, 40(8): 2129-2153.
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2129-2153
    • Xu, L.1
  • 42
    • 3843056324 scopus 로고    scopus 로고
    • Bayesian Ying Yang learning
    • N. Zhong and J. Liu (Eds.), Berlin: Springer
    • Xu L. Bayesian Ying Yang learning. In: Zhong N, Liu J, eds. Intelligent Technologies for Information Analysis. Berlin: Springer, 2004, 615-706.
    • (2004) Intelligent Technologies for Information Analysis , pp. 615-706
    • Xu, L.1
  • 43
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 1998, 44(6): 2743-2760.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 44
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop C M. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 1995, 7(1): 108-116.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 45
    • 79952314822 scopus 로고    scopus 로고
    • When semi-supervised learning meets ensemble learning. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (A)
    • Zhou Z H. When semi-supervised learning meets ensemble learning. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (A). Frontiers of Electrical and Electronic Engineering in China, 2011, 6(1): 6-16.
    • (2011) Frontiers of Electrical and Electronic Engineering in China , vol.6 , Issue.1 , pp. 6-16
    • Zhou, Z.H.1
  • 46
    • 0344073962 scopus 로고    scopus 로고
    • RBF nets, mixture experts, and Bayesian Ying-Yang learning
    • Xu L. RBF nets, mixture experts, and Bayesian Ying-Yang learning. Neurocomputing, 1998, 19(1-3): 223-257.
    • (1998) Neurocomputing , vol.19 , Issue.1-3 , pp. 223-257
    • Xu, L.1
  • 47
    • 3843095548 scopus 로고    scopus 로고
    • Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
    • Xu L. Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective. Neural Information Processing-Letters and Reviews, 2003, 1(1): 1-52.
    • (2003) Neural Information Processing-Letters and Reviews , vol.1 , Issue.1 , pp. 1-52
    • Xu, L.1
  • 48
    • 0037380850 scopus 로고    scopus 로고
    • BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
    • Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units. Neurocomputing, 2003, 51: 277-301.
    • (2003) Neurocomputing , vol.51 , pp. 277-301
    • Xu, L.1
  • 49
    • 0003667620 scopus 로고
    • Integral, Measure, and Derivative: A Unified Approach
    • New York: Dover Publications
    • Shilov G E, Gurevich B L. Integral, Measure, and Derivative: A Unified Approach. Silverman R trans. New York: Dover Publications, 1978.
    • (1978) Silverman R Trans
    • Shilov, G.E.1    Gurevich, B.L.2
  • 51
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Juang B H, Katagiri S. Discriminative learning for minimum error classification. IEEE Transactions on Signal Processing, 1992, 40(12): 3043-3054.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.H.1    Katagiri, S.2
  • 53
    • 0033884177 scopus 로고    scopus 로고
    • Maximum likelihood and minimum classification error factor analysis for automatic speech recognition
    • Saul L K, Rahim M G. Maximum likelihood and minimum classification error factor analysis for automatic speech recognition. IEEE Transactions on Speech and Audio Processing, 2000, 8(2): 115-125.
    • (2000) IEEE Transactions on Speech and Audio Processing , vol.8 , Issue.2 , pp. 115-125
    • Saul, L.K.1    Rahim, M.G.2
  • 54
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica, 1978, 14(5): 465-471.
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 55
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Hinton G E, Dayan P, Frey B J, Neal R M. The "wake-sleep" algorithm for unsupervised neural networks. Science, 1995, 268(5214): 1158-1161.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 56
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • Xu L, Oja E, Suen C Y. Modified Hebbian learning for curve and surface fitting. Neural Networks, 1992, 5(3): 441-457.
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 57
    • 0000280443 scopus 로고
    • A neural net for dual subspace pattern recognition methods
    • Xu L, Krzyzak A, Oja E. A neural net for dual subspace pattern recognition methods. International Journal of Neural Systems, 1991, 2(3): 169-184.
    • (1991) International Journal of Neural Systems , vol.2 , Issue.3 , pp. 169-184
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 58
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), San Mateo: Morgan Kaufmann
    • Hinton G E, Zemel R S. Autoencoders, minimum description length and Helmholtz free energy. In: Cowan J D, Tesauro G, Alspector J, eds. Advances in Neural Information Processing Systems 6. San Mateo: Morgan Kaufmann, 1994, 449-455.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 449-455
    • Hinton, G.E.1    Zemel, R.S.2
  • 61
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model, and blind source separation
    • Xu L. Temporal BYY learning for state space approach, hidden Markov model, and blind source separation. IEEE Transactions on Signal Processing, 2000, 48(7): 2132-2144.
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.7 , pp. 2132-2144
    • Xu, L.1
  • 62
    • 77954757210 scopus 로고    scopus 로고
    • Machine learning problems from optimization perspective
    • Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization, 2010, 47(3): 369-401.
    • (2010) Journal of Global Optimization , vol.47 , Issue.3 , pp. 369-401
    • Xu, L.1
  • 63
    • 0038259620 scopus 로고    scopus 로고
    • Bayesian Ying Yang system and theory as a unified statistical learning approach: (II) From unsupervised learning to supervised learning, and temporal modeling
    • In: Wong K M, King I, Yeung D Y, eds
    • Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (II) From unsupervised learning to supervised learning, and temporal modeling. In: Wong K M, King I, Yeung D Y, eds. Proceedings of Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective. 1997, 29-42.
    • (1997) Proceedings of Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective , pp. 29-42
    • Xu, L.1
  • 64
    • 0344828740 scopus 로고    scopus 로고
    • Bayesian-Kullback YING-YANG machines for supervised learning
    • San Diego, CA
    • Xu L. Bayesian-Kullback YING-YANG machines for supervised learning. In: Proceedings of the 1996 World Congress On Neural Networks. San Diego, CA, 1996, 193-200.
    • (1996) Proceedings of the 1996 World Congress On Neural Networks , pp. 193-200
    • Xu, L.1
  • 65
    • 0032213587 scopus 로고    scopus 로고
    • Bayesian Kullback Ying-Yang dependence reduction theory
    • Xu L. Bayesian Kullback Ying-Yang dependence reduction theory. Neurocomputing, 1998, 22(1-3): 81-111.
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 81-111
    • Xu, L.1
  • 66
    • 0012707139 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach: (V) Temporal modeling for temporal perception and control
    • Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach: (V) Temporal modeling for temporal perception and control. In: Proceedings of the International Conference on Neural Information Processing. 1998, 2: 877-884.
    • (1998) Proceedings of the International Conference on Neural Information Processing , vol.2 , pp. 877-884
    • Xu, L.1
  • 67
    • 0030659998 scopus 로고    scopus 로고
    • New advances on Bayesian Ying-Yang learning system with Kullback and non-Kullback separation functionals
    • Xu L. New advances on Bayesian Ying-Yang learning system with Kullback and non-Kullback separation functionals. In: Proceedings of 1997 IEEE-(INNS) Conference on Neural Networks. 1997, 3: 1942-1947.
    • (1997) Proceedings of 1997 IEEE-(INNS) Conference on Neural Networks , vol.3 , pp. 1942-1947
    • Xu, L.1
  • 68
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang machine, clustering and number of clusters
    • Xu L. Bayesian Ying-Yang machine, clustering and number of clusters. Pattern Recognition Letters, 1997, 18(11-13): 1167-1178.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1167-1178
    • Xu, L.1
  • 69
    • 0029754540 scopus 로고    scopus 로고
    • How many clusters?: A YING-YANG machine based theory for a classical open problem in pattern recognition
    • Xu L. How many clusters?: A YING-YANG machine based theory for a classical open problem in pattern recognition. In: Proceedings of the 1996 IEEE International Conference on Neural Networks. 1996, 3: 1546-1551.
    • (1996) Proceedings of the 1996 IEEE International Conference on Neural Networks , vol.3 , pp. 1546-1551
    • Xu, L.1
  • 70
    • 0033333591 scopus 로고    scopus 로고
    • Bayesian Ying-Yang theory for empirical learning, regularization, and model selection: General formulation
    • Xu L. Bayesian Ying-Yang theory for empirical learning, regularization, and model selection: General formulation. In: Proceedings of International Joint Conference on Neural Networks. 1999, 1: 552-557.
    • (1999) Proceedings of International Joint Conference on Neural Networks , vol.1 , pp. 552-557
    • Xu, L.1
  • 71
    • 0033330628 scopus 로고    scopus 로고
    • Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration
    • Xu L. Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration. In: Proceedings of International Joint Conference on Neural Networks. 1999, 2: 949-954.
    • (1999) Proceedings of International Joint Conference on Neural Networks , vol.2 , pp. 949-954
    • Xu, L.1
  • 72
    • 0036072896 scopus 로고    scopus 로고
    • Temporal factor analysis: Stable-identifiable family, orthogonal flow learning, and automated model selection
    • Xu L. Temporal factor analysis: Stable-identifiable family, orthogonal flow learning, and automated model selection. In: Proceedings of International Joint Conference on Neural Networks. 2002, 472-476.
    • (2002) Proceedings of International Joint Conference on Neural Networks , pp. 472-476
    • Xu, L.1
  • 73
    • 0001560954 scopus 로고
    • Information geometry and alternating minimization procedures
    • Csiszár I, Tusnády G. Information geometry and alternating minimization procedures. Statistics and Decisions, 1984, (Suppl 1): 205-237.
    • (1984) Statistics and Decisions , Issue.SUPPL. 1 , pp. 205-237
    • Csiszár, I.1    Tusnády, G.2
  • 74
    • 0033325257 scopus 로고    scopus 로고
    • Temporal Bayesian Ying-Yang dependence reduction, blind source separation and principal independent components
    • Xu L. Temporal Bayesian Ying-Yang dependence reduction, blind source separation and principal independent components. In: Proceedings of International Joint Conference on Neural Networks. 1999, 2: 1071-1076.
    • (1999) Proceedings of International Joint Conference on Neural Networks , vol.2 , pp. 1071-1076
    • Xu, L.1
  • 75
    • 79958755383 scopus 로고    scopus 로고
    • Discriminative training of GMM-HMM acoustic model by RPCL learning. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B)
    • Pang Z H, Tu S K, Su D, Wu X H, Xu L. Discriminative training of GMM-HMM acoustic model by RPCL learning. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B). Frontiers of Electrical and Electronic Engineering in China, 2011, 6(2): 283-290.
    • (2011) Frontiers of Electrical and Electronic Engineering in China , vol.6 , Issue.2 , pp. 283-290
    • Pang, Z.H.1    Tu, S.K.2    Su, D.3    Wu, X.H.4    Xu, L.5
  • 77
    • 0002543590 scopus 로고
    • Maximum likelihood source separation by the expectation maximization technique: deterministic and stochastic implementation
    • Belouchrani A, Cardoso J. Maximum likelihood source separation by the expectation maximization technique: deterministic and stochastic implementation. In. Proceedings of NOLTA95. 1995, 49-53.
    • (1995) Proceedings of NOLTA95 , pp. 49-53
    • Belouchrani, A.1    Cardoso, J.2
  • 81
    • 37249080278 scopus 로고    scopus 로고
    • Penalized logistic regression for detecting gene interactions
    • Park M Y, Hastie T. Penalized logistic regression for detecting gene interactions. Biostatistics, 2008, 9(1): 30-50.
    • (2008) Biostatistics , vol.9 , Issue.1 , pp. 30-50
    • Park, M.Y.1    Hastie, T.2
  • 83
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis S, Ghahramani Z. A unifying review of linear Gaussian models. Neural Computation, 1999, 11(2): 305-345.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 84
    • 0034170950 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Ghahramani Z, Hinton G E. Variational learning for switching state-space models. Neural Computation, 2000, 12(4): 831-864.
    • (2000) Neural Computation , vol.12 , Issue.4 , pp. 831-864
    • Ghahramani, Z.1    Hinton, G.E.2
  • 85
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway R H, Stoffer D S. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 1982, 3(4): 253-264.
    • (1982) Journal of Time Series Analysis , vol.3 , Issue.4 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 87
    • 0027681974 scopus 로고
    • ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition
    • Digalakis V, Rohlicek J R, Ostendorf M. ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition. IEEE Transactions on Speech and Audio Processing, 1993, 1(4): 431-442.
    • (1993) IEEE Transactions on Speech and Audio Processing , vol.1 , Issue.4 , pp. 431-442
    • Digalakis, V.1    Rohlicek, J.R.2    Ostendorf, M.3
  • 88
    • 79958760667 scopus 로고    scopus 로고
    • Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B)
    • Wang P H, Shi L, Du L, Liu H W, Xu L, Bao Z. Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning. A special issue on Machine Learning and Intelligence Science: IScIDE2010 (B). Frontiers of Electrical and Electronic Engineering in China, 2011, 6(2): 300-317.
    • (2011) Frontiers of Electrical and Electronic Engineering in China , vol.6 , Issue.2 , pp. 300-317
    • Wang, P.H.1    Shi, L.2    Du, L.3    Liu, H.W.4    Xu, L.5    Bao, Z.6
  • 89
    • 70349227947 scopus 로고    scopus 로고
    • The application of hidden Markov models in speech recognition
    • Gales M J F, Young S. The application of hidden Markov models in speech recognition. Foundations and Trends in Signal Processing, 2008, 1(3): 195-304.
    • (2008) Foundations and Trends in Signal Processing , vol.1 , Issue.3 , pp. 195-304
    • Gales, M.J.F.1    Young, S.2
  • 90
    • 67349166946 scopus 로고    scopus 로고
    • Detecting gene-gene interactions that underlie human diseases
    • Cordell H J. Detecting gene-gene interactions that underlie human diseases. Nature Reviews Genetics, 2009, 10(6): 392-404.
    • (2009) Nature Reviews Genetics , vol.10 , Issue.6 , pp. 392-404
    • Cordell, H.J.1
  • 91
    • 54149088214 scopus 로고    scopus 로고
    • Epistasis - The essential role of gene interactions in the structure and evolution of genetic systems
    • Phillips P C. Epistasis - The essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics, 2008, 9(11): 855-867.
    • (2008) Nature Reviews Genetics , vol.9 , Issue.11 , pp. 855-867
    • Phillips, P.C.1
  • 93
    • 0037310257 scopus 로고    scopus 로고
    • Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity
    • Ritchie M D, Hahn LW, Moore J H. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genetic Epidemiology, 2003, 24(2): 150-157.
    • (2003) Genetic Epidemiology , vol.24 , Issue.2 , pp. 150-157
    • Ritchie, M.D.1    Hahn, L.W.2    Moore, J.H.3
  • 94
    • 77956465653 scopus 로고    scopus 로고
    • Combining classifiers and learning mixtureof-experts
    • J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey, PA: IGI Global
    • Xu L, Amari S. Combining classifiers and learning mixtureof-experts. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. Hershey, PA: IGI Global, 2008, 318-326.
    • (2008) Encyclopedia of Artificial Intelligence , pp. 318-326
    • Xu, L.1    Amari, S.2
  • 95
    • 80054022606 scopus 로고    scopus 로고
    • A binary matrix factorization algorithm for protein complex prediction
    • Tu S K, Chen R S, Xu L. A binary matrix factorization algorithm for protein complex prediction. Proteome Science, 2011, 9(Suppl 1): S18.
    • (2011) Proteome Science , vol.9 , Issue.SUPPL. 1
    • Tu, S.K.1    Chen, R.S.2    Xu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.