메뉴 건너뛰기




Volumn 6, Issue 2, 2011, Pages 215-244

Learning Gaussian mixture with automatic model selection: A comparative study on three Bayesian related approaches

Author keywords

automatic model selection; Bayesian Ying Yang (BYY) harmony learning; conjugate distributions; Dirichlet; empirical comparison; Gaussian mixture model (GMM); Jeffreys prior; joint Normal Wishart (NW); marginalized student's T distribution; minimum message length (MML); variational Bayesian (VB)

Indexed keywords


EID: 79958731437     PISSN: 16733460     EISSN: 16733584     Source Type: Journal    
DOI: 10.1007/s11460-011-0153-z     Document Type: Article
Times cited : (14)

References (43)
  • 2
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R, Walker H. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 1984, 26(2): 195-239.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.1    Walker, H.2
  • 4
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of Gaussian mixtures based on variational component splitting
    • Constantinopoulos C, Likas A. Unsupervised learning of Gaussian mixtures based on variational component splitting. IEEE Transactions on Neural Networks, 2007, 18(3): 745-755.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 5
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of Gaussian mixture models
    • Verbeek J J, Vlassis N, Krose B. Efficient greedy learning of Gaussian mixture models. Neural Computation, 2003, 15(2): 469-485.
    • (2003) Neural Computation , vol.15 , Issue.2 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Krose, B.3
  • 6
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1): 129-151.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 8
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 9
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics, 1978, 6(2): 461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 10
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • Barron A R, Rissanen J, Yu B. The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 1998, 44(6): 2743-2760.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.R.1    Rissanen, J.2    Yu, B.3
  • 11
    • 0018015137 scopus 로고
    • Modelling by the shortest data description
    • Rissanen J. Modelling by the shortest data description. Automatica, 1978, 14(5): 465-471.
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 12
    • 77956483883 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system, best harmony learning, and five action circling
    • Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. Frontiers of Electrical and Electronic Enginnering in China, 2010, 5(3): 281-328.
    • (2010) Frontiers of Electrical and Electronic Enginnering in China , vol.5 , Issue.3 , pp. 281-328
    • Xu, L.1
  • 14
    • 0027629412 scopus 로고
    • Rival penelized competitive learning for clustering analysis, RBF net, and curve detection
    • Xu L, Krzyzak A, Oja E. Rival penelized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Transactions on Neural Networks, 1993, 4(4): 636-649.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 15
  • 16
    • 0005906827 scopus 로고
    • Bayesian-Kullback coupled Ying-Yang machines: unified learnings and new results on vector quantization
    • Xu L. Bayesian-Kullback coupled Ying-Yang machines: unified learnings and new results on vector quantization. In: Proceedings of International Conference on Neural Information Processing. 1995, 977-988.
    • (1995) Proceedings of International Conference on Neural Information Processing , pp. 977-988
    • Xu, L.1
  • 17
    • 46049106446 scopus 로고    scopus 로고
    • Bayesian Ying Yang learning
    • Xu L. Bayesian Ying Yang learning. Scholarpedia, 2007, 2(3): 1809.
    • (2007) Scholarpedia , vol.2 , Issue.3 , pp. 1809
    • Xu, L.1
  • 19
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Norwell: Kluwer Academic Publishers
    • Neal R, Hinton G E. A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models. Norwell: Kluwer Academic Publishers, 1998, 355-368.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.E.2
  • 21
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jaakkola T, Jordan M. Bayesian parameter estimation via variational methods. Statistics and Computing, 2000, 10(1): 25-37.
    • (2000) Statistics and Computing , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.1    Jordan, M.2
  • 22
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace C, Boulton D. An information measure for classification. The Computer Journal, 1968, 11(2): 185-194.
    • (1968) The Computer Journal , vol.11 , Issue.2 , pp. 185-194
    • Wallace, C.1    Boulton, D.2
  • 23
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace C S, Dowe D L. Minimum message length and Kolmogorov complexity. The Computer Journal, 1999, 42(4): 270-283.
    • (1999) The Computer Journal , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.S.1    Dowe, D.L.2
  • 26
    • 77954757210 scopus 로고    scopus 로고
    • Machine learning problems from optimization perspective
    • Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization, 2010, 47(3): 369-401.
    • (2010) Journal of Global Optimization , vol.47 , Issue.3 , pp. 369-401
    • Xu, L.1
  • 28
    • 46049101030 scopus 로고    scopus 로고
    • Bayesian Ying Yang system, best harmony learning and Gaussian manifold based family
    • J. Zurada, G. Yen, and J. Wang (Eds.), Berlin-Heidelberg: Springer-Verlag
    • Xu L. Bayesian Ying Yang system, best harmony learning and Gaussian manifold based family. In: Zurada J, Yen G, Wang J, eds. Computational Intelligence: Research Frontiers. Berlin-Heidelberg: Springer-Verlag, 2008, 5050: 48-78.
    • (2008) Computational Intelligence: Research Frontiers , pp. 48-78
    • Xu, L.1
  • 29
    • 0028731590 scopus 로고
    • Multisets modeling learning: a unified theory for supervised and unsupervised learning
    • Xu L. Multisets modeling learning: a unified theory for supervised and unsupervised learning. In: Proceedings of IEEE Intentional Joint Conference on Neural Networks. 1994, I: 315-320.
    • (1994) Proceedings of IEEE Intentional Joint Conference on Neural Networks , vol.I , pp. 315-320
    • Xu, L.1
  • 30
    • 0002754576 scopus 로고
    • A unified learning framework: multisets modeling learning
    • Xu L. A unified learning framework: multisets modeling learning. In: Proceedings of World Congress on Neural Networks. 1995, 1: 35-42.
    • (1995) Proceedings of World Congress on Neural Networks , vol.1 , pp. 35-42
    • Xu, L.1
  • 31
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models
    • Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models. Neural Networks, 2002, 15(8-9): 1125-1151.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1125-1151
    • Xu, L.1
  • 32
    • 0038355082 scopus 로고    scopus 로고
    • Data smoothing regularization, multi-sets-learning, and problem solving strategies
    • Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks, 2003, 16(5-6): 817-825.
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 817-825
    • Xu, L.1
  • 33
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2007, 40(8): 2129-2153.
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2129-2153
    • Xu, L.1
  • 35
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets
    • Xu L. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets. International Journal of Neural Systems, 2001, 11(1): 3-69.
    • (2001) International Journal of Neural Systems , vol.11 , Issue.1 , pp. 3-69
    • Xu, L.1
  • 37
    • 0031122049 scopus 로고    scopus 로고
    • An experimental and theoretical comparison of model selection methods
    • Kearns M, Mansour Y, Ng A Y, Ron D. An experimental and theoretical comparison of model selection methods. Machine Learning, 1997, 27(1): 7-50.
    • (1997) Machine Learning , vol.27 , Issue.1 , pp. 7-50
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3    Ron, D.4
  • 38
    • 0032655373 scopus 로고    scopus 로고
    • Refinements of MDL and MML coding
    • Wallace C S, Dowe D L. Refinements of MDL and MML coding. The Computer Journal, 1999, 42(4): 330-337.
    • (1999) The Computer Journal , vol.42 , Issue.4 , pp. 330-337
    • Wallace, C.S.1    Dowe, D.L.2
  • 41
    • 77955802906 scopus 로고    scopus 로고
    • A Bayesian framework for image segmentation with spatially varying mixtures
    • Nikou C, Likas A, Galatsanos N. A Bayesian framework for image segmentation with spatially varying mixtures. IEEE Transactions on Image Processing, 2010, 19(9): 2278-2289.
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.9 , pp. 2278-2289
    • Nikou, C.1    Likas, A.2    Galatsanos, N.3
  • 43
    • 12844262766 scopus 로고    scopus 로고
    • "GrabCut": interactive foreground extraction using iterated graph cuts
    • Rother C, Kolmogorov V, Blake A. "GrabCut": interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004, 23(3): 309-314.
    • (2004) ACM Transactions on Graphics , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.