메뉴 건너뛰기




Volumn 18, Issue 11-13, 1997, Pages 1167-1178

Bayesian Ying-Yang machine, clustering and number of clusters

Author keywords

Bayesian Ying Yang machine; Cluster analysis; Finite mixture; Number of clusters

Indexed keywords

ALGORITHMS; LEARNING SYSTEMS; NUMBER THEORY; SET THEORY; STATISTICS; VECTOR QUANTIZATION;

EID: 0031270958     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(97)00121-9     Document Type: Article
Times cited : (117)

References (9)
  • 4
    • 0005906827 scopus 로고
    • YING-YANG machine: A Bayesian-Kullback scheme for unified learnings and new results on vector quantization, Keynote talk
    • Xu, L., 1995. YING-YANG machine: A Bayesian-Kullback scheme for unified learnings and new results on vector quantization, Keynote talk. In: Proc. Internat. Conf. on Neural Information Processing (ICONIP95), pp. 977-988.
    • (1995) Proc. Internat. Conf. on Neural Information Processing (ICONIP95) , pp. 977-988
    • Xu, L.1
  • 5
    • 0029754540 scopus 로고    scopus 로고
    • How many clusters?: A YING-YANG machine based theory for a classical open problem in pattern recognition. Invited Talk
    • Xu, L., 1996. How many clusters?: A YING-YANG machine based theory for a classical open problem in pattern recognition. Invited Talk. In: Proc. 1996 IEEE Internat. Conf. on Neural Networks, Vol. 3, pp. 1546-1551.
    • (1996) Proc. 1996 IEEE Internat. Conf. on Neural Networks , vol.3 , pp. 1546-1551
    • Xu, L.1
  • 6
    • 0006005149 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach: (I) for unsupervised and semi-unsupervised learning
    • Amari, S., Kassabov, N. (Eds.), Springer, Berlin
    • Xu, L., 1997a. Bayesian Ying-Yang system and theory as a unified statistical learning approach: (I) For unsupervised and semi-unsupervised learning. In: Amari, S., Kassabov, N. (Eds.), Brain-like Computing and Intelligent Information Systems. Springer, Berlin.
    • (1997) Brain-like Computing and Intelligent Information Systems
    • Xu, L.1
  • 7
    • 0348221509 scopus 로고    scopus 로고
    • Bayesian ying-yang system and theory as a unified statistical learning approach: (II) Supervised learning
    • Proc. Internat. Workshop on Theoretical Aspects of Neural Computation, Hong Kong, 26-28 May. Springer, Berlin
    • Xu, L., 1997b. Bayesian ying-yang system and theory as a unified statistical learning approach: (II) Supervised learning. In: Proc. Internat. Workshop on Theoretical Aspects of Neural Computation, Hong Kong, 26-28 May. Lecture Notes in Computer Science. Springer, Berlin.
    • (1997) Lecture Notes in Computer Science
    • Xu, L.1
  • 8
    • 0030659998 scopus 로고    scopus 로고
    • New advances on Bayesian ying-yang learning system with Kullback and non-Kullback separation functionals
    • Xu, L., 1997c. New advances on Bayesian ying-yang learning system with Kullback and non-Kullback separation functionals. In: Proc. 1997 IEEE Internat. Conf. on Neural Networks, Vol. III, pp. 1942-1947.
    • (1997) Proc. 1997 IEEE Internat. Conf. on Neural Networks , vol.3 , pp. 1942-1947
    • Xu, L.1
  • 9
    • 0027629412 scopus 로고
    • Competitive learning for clustering analysis, RBF net and curve detection
    • Xu, L., Krzyzak, A., Oja, E., 1993. Competitive learning for clustering analysis, RBF net and curve detection. IEEE Trans. Neural Networks 4 (4), 636-649.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.