메뉴 건너뛰기




Volumn 17, Issue 7, 2012, Pages 423-430

The protein acetylome and the regulation of metabolism

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A; HISTONE; VEGETABLE PROTEIN;

EID: 84862894494     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2012.03.008     Document Type: Review
Times cited : (81)

References (74)
  • 1
    • 61849111194 scopus 로고    scopus 로고
    • Acetyl-CoA-life at the metabolic nexus
    • Oliver D.J., et al. Acetyl-CoA-life at the metabolic nexus. Plant Sci. 2009, 176:597-601.
    • (2009) Plant Sci. , vol.176 , pp. 597-601
    • Oliver, D.J.1
  • 2
    • 34447622497 scopus 로고    scopus 로고
    • Occurrence of naturally acetylated lignin units
    • Del Rio J.C., et al. Occurrence of naturally acetylated lignin units. J. Agric. Food Chem. 2007, 55:5461-5468.
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 5461-5468
    • Del Rio, J.C.1
  • 4
    • 77449116892 scopus 로고    scopus 로고
    • Acetylation goes global: the emergence of acetylation biology
    • Norris K.L., et al. Acetylation goes global: the emergence of acetylation biology. Sci. Signal. 2009, 2:pe76.
    • (2009) Sci. Signal. , vol.2
    • Norris, K.L.1
  • 5
    • 79953689290 scopus 로고    scopus 로고
    • Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis
    • Finkemeier I., et al. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol. 2011, 155:1779-1790.
    • (2011) Plant Physiol. , vol.155 , pp. 1779-1790
    • Finkemeier, I.1
  • 6
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
    • 974-974
    • Wang Q., et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 328. 974-974.
    • (2010) Science , vol.328
    • Wang, Q.1
  • 7
    • 79953702814 scopus 로고    scopus 로고
    • Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis
    • Wu X., et al. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol. 2011, 155:1769-1778.
    • (2011) Plant Physiol. , vol.155 , pp. 1769-1778
    • Wu, X.1
  • 8
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • Zhao S.M., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.M.1
  • 9
    • 26844567216 scopus 로고    scopus 로고
    • Genes, enzymes and regulation of arginine biosynthesis in plants
    • Slocum R.D. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol. Biochem. 2005, 43:729-745.
    • (2005) Plant Physiol. Biochem. , vol.43 , pp. 729-745
    • Slocum, R.D.1
  • 10
    • 79955571171 scopus 로고    scopus 로고
    • Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes
    • Takahashi H., et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 2011, 62:157-184.
    • (2011) Annu. Rev. Plant Biol. , vol.62 , pp. 157-184
    • Takahashi, H.1
  • 11
    • 33845928752 scopus 로고    scopus 로고
    • Mitochondrial metabolism in developing embryos of Brassica napus
    • Schwender J., et al. Mitochondrial metabolism in developing embryos of Brassica napus. J. Biol. Chem. 2006, 281:34040-34047.
    • (2006) J. Biol. Chem. , vol.281 , pp. 34040-34047
    • Schwender, J.1
  • 12
    • 0141692862 scopus 로고    scopus 로고
    • Fatty acid biosynthesis in mitochondria of grasses: malonyl-coenzyme A is generated by a mitochondrial-localized acetyl-coenzyme A carboxylase
    • Focke M., et al. Fatty acid biosynthesis in mitochondria of grasses: malonyl-coenzyme A is generated by a mitochondrial-localized acetyl-coenzyme A carboxylase. Plant Physiol. 2003, 133:875-884.
    • (2003) Plant Physiol. , vol.133 , pp. 875-884
    • Focke, M.1
  • 13
    • 57749092770 scopus 로고    scopus 로고
    • Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes
    • Sapir-Mir M., et al. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol. 2008, 148:1219-1228.
    • (2008) Plant Physiol. , vol.148 , pp. 1219-1228
    • Sapir-Mir, M.1
  • 14
    • 34248197316 scopus 로고    scopus 로고
    • Storage reserve mobilisation and seedling establishment in Arabidopsis
    • American Society of Plant Biologists, C.R. Somerville, E.M. Meyerowitz (Eds.)
    • Penfield S., et al. Storage reserve mobilisation and seedling establishment in Arabidopsis. The Arabidopsis Book 2006, American Society of Plant Biologists. C.R. Somerville, E.M. Meyerowitz (Eds.).
    • (2006) The Arabidopsis Book
    • Penfield, S.1
  • 15
    • 33845480946 scopus 로고    scopus 로고
    • Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling
    • Mittal R., et al. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18574-18579.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18574-18579
    • Mittal, R.1
  • 16
    • 33744457909 scopus 로고    scopus 로고
    • Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation
    • Mukherjee S., et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 2006, 312:1211-1214.
    • (2006) Science , vol.312 , pp. 1211-1214
    • Mukherjee, S.1
  • 17
    • 34247869836 scopus 로고    scopus 로고
    • A newly discovered post-translational modification - the acetylation of serine and threonine residues
    • Mukherjee S., et al. A newly discovered post-translational modification - the acetylation of serine and threonine residues. Trends Biochem. Sci. 2007, 32:210-216.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 210-216
    • Mukherjee, S.1
  • 18
    • 66249126298 scopus 로고    scopus 로고
    • Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans
    • Arnesen T., et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8157-8162.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8157-8162
    • Arnesen, T.1
  • 19
    • 71449089622 scopus 로고    scopus 로고
    • A synopsis of eukaryotic N-terminal acetyltransferases: nomenclature, subunits and substrates
    • Polevoda B., et al. A synopsis of eukaryotic N-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc. 2009, 3:S2.
    • (2009) BMC Proc. , vol.3
    • Polevoda, B.1
  • 20
    • 0041920603 scopus 로고    scopus 로고
    • Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis
    • Pesaresi P., et al. Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell 2003, 15:1817-1832.
    • (2003) Plant Cell , vol.15 , pp. 1817-1832
    • Pesaresi, P.1
  • 21
    • 79958039807 scopus 로고    scopus 로고
    • Towards a functional understanding of protein N-terminal acetylation
    • Arnesen T. Towards a functional understanding of protein N-terminal acetylation. PLoS Biol. 2011, 9:e1001074.
    • (2011) PLoS Biol. , vol.9
    • Arnesen, T.1
  • 22
    • 80555131132 scopus 로고    scopus 로고
    • N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex
    • Scott D.C., et al. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 2011, 334:674-678.
    • (2011) Science , vol.334 , pp. 674-678
    • Scott, D.C.1
  • 23
    • 77149120798 scopus 로고    scopus 로고
    • N-terminal acetylation of cellular proteins creates specific degradation signals
    • Hwang C.S., et al. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 2010, 327:973-977.
    • (2010) Science , vol.327 , pp. 973-977
    • Hwang, C.S.1
  • 24
    • 80051970600 scopus 로고    scopus 로고
    • Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival
    • Yi C.H., et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 2011, 146:607-620.
    • (2011) Cell , vol.146 , pp. 607-620
    • Yi, C.H.1
  • 25
    • 67650156863 scopus 로고    scopus 로고
    • Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs
    • Huang S.B., et al. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs. Plant Physiol. 2009, 150:1272-1285.
    • (2009) Plant Physiol. , vol.150 , pp. 1272-1285
    • Huang, S.B.1
  • 26
    • 44349099751 scopus 로고    scopus 로고
    • Sorting signals, N-terminal modifications and abundance of the chloroplast proteome
    • Zybailov B., et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 2008, 3:e1994.
    • (2008) PLoS ONE , vol.3
    • Zybailov, B.1
  • 27
    • 84855182246 scopus 로고    scopus 로고
    • Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins
    • Bischof S., et al. Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins. Plant Cell 2011, 23:3911-3928.
    • (2011) Plant Cell , vol.23 , pp. 3911-3928
    • Bischof, S.1
  • 28
    • 44649085761 scopus 로고    scopus 로고
    • Co- and post-translational modifications in Rubisco: unanswered questions
    • Houtz R.L., et al. Co- and post-translational modifications in Rubisco: unanswered questions. J. Exp. Bot. 2008, 59:1635-1645.
    • (2008) J. Exp. Bot. , vol.59 , pp. 1635-1645
    • Houtz, R.L.1
  • 29
    • 70349783015 scopus 로고    scopus 로고
    • Arabidopsis cytoplasmic N-acetyltransferase, as the ortholog of RimL in E. coli, controls flowering time via the autonomous pathway
    • Hwang S.M., et al. Arabidopsis cytoplasmic N-acetyltransferase, as the ortholog of RimL in E. coli, controls flowering time via the autonomous pathway. Plant Sci. 2009, 177:593-600.
    • (2009) Plant Sci. , vol.177 , pp. 593-600
    • Hwang, S.M.1
  • 30
    • 15044341489 scopus 로고    scopus 로고
    • The N-terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants
    • Kunze G., et al. The N-terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 2004, 16:3496-3507.
    • (2004) Plant Cell , vol.16 , pp. 3496-3507
    • Kunze, G.1
  • 31
    • 77955152008 scopus 로고    scopus 로고
    • Decoding the epigenetic language of plant development
    • Ahmad A., et al. Decoding the epigenetic language of plant development. Mol. Plant 2010, 3:719-728.
    • (2010) Mol. Plant , vol.3 , pp. 719-728
    • Ahmad, A.1
  • 32
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein T. Translating the histone code. Science 2001, 293:1074-1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1
  • 33
    • 1242344206 scopus 로고    scopus 로고
    • A plant dialect of the histone language
    • Loidl P. A plant dialect of the histone language. Trends Plant Sci. 2004, 9:84-90.
    • (2004) Trends Plant Sci. , vol.9 , pp. 84-90
    • Loidl, P.1
  • 34
    • 34547858913 scopus 로고    scopus 로고
    • Structure and acetyl-lysine recognition of the bromodomain
    • Mujtaba S., et al. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 2007, 26:5521-5527.
    • (2007) Oncogene , vol.26 , pp. 5521-5527
    • Mujtaba, S.1
  • 35
    • 43249091345 scopus 로고    scopus 로고
    • Distinctive core histone post-translational modification patterns in Arabidopsis thaliana
    • Berger F., et al. Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE 2007, 2:e1210.
    • (2007) PLoS ONE , vol.2
    • Berger, F.1
  • 36
    • 34249787308 scopus 로고    scopus 로고
    • Roles of dynamic and reversible histone acetylation in plant development and polyploidy
    • Chen Z.J., Tian L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta 2007, 1769:295-307.
    • (2007) Biochim. Biophys. Acta , vol.1769 , pp. 295-307
    • Chen, Z.J.1    Tian, L.2
  • 37
    • 0036929765 scopus 로고    scopus 로고
    • Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes
    • Pandey R., et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002, 30:5036-5055.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 5036-5055
    • Pandey, R.1
  • 38
    • 77955142258 scopus 로고    scopus 로고
    • Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis
    • Servet C., et al. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol. Plant 2010, 3:670-677.
    • (2010) Mol. Plant , vol.3 , pp. 670-677
    • Servet, C.1
  • 39
    • 17044429463 scopus 로고    scopus 로고
    • Metabolic stress regulates basic transcription through acetyl-coenzyme A
    • Choi C.H., et al. Metabolic stress regulates basic transcription through acetyl-coenzyme A. Cell. Mol. Life Sci. 2005, 62:625-628.
    • (2005) Cell. Mol. Life Sci. , vol.62 , pp. 625-628
    • Choi, C.H.1
  • 40
    • 79955112442 scopus 로고    scopus 로고
    • Histone variants and modifications in plant gene regulation
    • Deal R.B., Henikoff S. Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 2011, 14:116-122.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 116-122
    • Deal, R.B.1    Henikoff, S.2
  • 41
    • 35649008287 scopus 로고    scopus 로고
    • Histone modifications and dynamic regulation of genome accessibility in plants
    • Pluger J., Wagner D. Histone modifications and dynamic regulation of genome accessibility in plants. Curr. Opin. Plant Biol. 2007, 10:645-652.
    • (2007) Curr. Opin. Plant Biol. , vol.10 , pp. 645-652
    • Pluger, J.1    Wagner, D.2
  • 42
    • 33845730777 scopus 로고    scopus 로고
    • Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression
    • Benhamed M., et al. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 2006, 18:2893-2903.
    • (2006) Plant Cell , vol.18 , pp. 2893-2903
    • Benhamed, M.1
  • 43
    • 12544259593 scopus 로고    scopus 로고
    • Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth
    • Bertrand C., et al. Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth. J. Biol. Chem. 2005, 280:1465-1473.
    • (2005) J. Biol. Chem. , vol.280 , pp. 1465-1473
    • Bertrand, C.1
  • 44
    • 34249814619 scopus 로고    scopus 로고
    • Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis
    • Deng W.W., et al. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol. 2007, 143:1660-1668.
    • (2007) Plant Physiol. , vol.143 , pp. 1660-1668
    • Deng, W.W.1
  • 45
    • 33845646899 scopus 로고    scopus 로고
    • Role of plant CBP/p300-like genes in the regulation of flowering time
    • Han S.K., et al. Role of plant CBP/p300-like genes in the regulation of flowering time. Plant J. 2007, 49:103-114.
    • (2007) Plant J. , vol.49 , pp. 103-114
    • Han, S.K.1
  • 46
    • 57849113242 scopus 로고    scopus 로고
    • The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis
    • Latrasse D., et al. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biol. 2008, 8:121.
    • (2008) BMC Plant Biol. , vol.8 , pp. 121
    • Latrasse, D.1
  • 47
    • 48249157844 scopus 로고    scopus 로고
    • Histone deacetylase genes in Arabidopsis development
    • Hollender C., Liu Z. Histone deacetylase genes in Arabidopsis development. J. Int. Plant Biol. 2008, 50:875-885.
    • (2008) J. Int. Plant Biol. , vol.50 , pp. 875-885
    • Hollender, C.1    Liu, Z.2
  • 48
    • 0034654011 scopus 로고    scopus 로고
    • Acetylation: a regulatory modification to rival phosphorylation?
    • Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation?. EMBO J. 2000, 19:1176-1179.
    • (2000) EMBO J. , vol.19 , pp. 1176-1179
    • Kouzarides, T.1
  • 49
    • 0030797585 scopus 로고    scopus 로고
    • Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
    • Gu W., Roeder R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997, 90:595-606.
    • (1997) Cell , vol.90 , pp. 595-606
    • Gu, W.1    Roeder, R.G.2
  • 50
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10230-10235.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10230-10235
    • Hallows, W.C.1
  • 51
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10224-10229.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10224-10229
    • Schwer, B.1
  • 52
    • 0347457075 scopus 로고    scopus 로고
    • Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
    • Starai V.J., et al. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002, 298:2390-2392.
    • (2002) Science , vol.298 , pp. 2390-2392
    • Starai, V.J.1
  • 53
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
    • (2006) Mol. Cell , vol.23 , pp. 607-618
    • Kim, S.C.1
  • 54
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1
  • 55
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1
  • 56
    • 56649114286 scopus 로고    scopus 로고
    • The diversity of lysine-acetylated proteins in Escherichia coli
    • Yu B.J., et al. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol. 2008, 18:1529-1536.
    • (2008) J. Microbiol. Biotechnol. , vol.18 , pp. 1529-1536
    • Yu, B.J.1
  • 57
    • 61649089277 scopus 로고    scopus 로고
    • Lysine acetylation is a highly abundant and evolutionary conserved modification in Escherichia coli
    • Zhang J.M., et al. Lysine acetylation is a highly abundant and evolutionary conserved modification in Escherichia coli. Mol. Cell. Proteomics 2009, 8:215-225.
    • (2009) Mol. Cell. Proteomics , vol.8 , pp. 215-225
    • Zhang, J.M.1
  • 58
    • 79551584971 scopus 로고    scopus 로고
    • Regulation of intermediary metabolism by protein acetylation
    • Guan K.L., Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 2011, 36:108-116.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 108-116
    • Guan, K.L.1    Xiong, Y.2
  • 59
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T., et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1
  • 60
    • 67649395959 scopus 로고    scopus 로고
    • Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals
    • Yu W., et al. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J. Biol. Chem. 2009, 284:13669-13675.
    • (2009) J. Biol. Chem. , vol.284 , pp. 13669-13675
    • Yu, W.1
  • 61
    • 0033995498 scopus 로고    scopus 로고
    • An assessment of alpha-tubulin isotype modification in developing cotton fiber
    • Dixon D.C., et al. An assessment of alpha-tubulin isotype modification in developing cotton fiber. Int. J. Plant Sci. 2000, 161:63-67.
    • (2000) Int. J. Plant Sci. , vol.161 , pp. 63-67
    • Dixon, D.C.1
  • 62
    • 0742267787 scopus 로고    scopus 로고
    • Post-translational modifications of alpha-tubulin in Zea mays L. are highly tissue specific
    • Wang W., et al. Post-translational modifications of alpha-tubulin in Zea mays L. are highly tissue specific. Planta 2004, 218:460-465.
    • (2004) Planta , vol.218 , pp. 460-465
    • Wang, W.1
  • 63
    • 54349127144 scopus 로고    scopus 로고
    • Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5
    • Benhamed M., et al. Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant J. 2008, 56:493-504.
    • (2008) Plant J. , vol.56 , pp. 493-504
    • Benhamed, M.1
  • 64
    • 33646048752 scopus 로고    scopus 로고
    • Chromosomal histone modification patterns - from conservation to diversity
    • 212-212
    • Fuchs J., et al. Chromosomal histone modification patterns - from conservation to diversity. Trends Plant Sci. 2006, 11. 212-212.
    • (2006) Trends Plant Sci. , vol.11
    • Fuchs, J.1
  • 65
    • 0037135972 scopus 로고    scopus 로고
    • The human silent information regulator 2 homologue SIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
    • Schwer B., et al. The human silent information regulator 2 homologue SIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 2002, 158:647-657.
    • (2002) J. Cell Biol. , vol.158 , pp. 647-657
    • Schwer, B.1
  • 66
    • 67649381630 scopus 로고    scopus 로고
    • Subcellular localization of rice histone deacetylases in organelles
    • Chung P.J., et al. Subcellular localization of rice histone deacetylases in organelles. FEBS Lett. 2009, 583:2249-2254.
    • (2009) FEBS Lett. , vol.583 , pp. 2249-2254
    • Chung, P.J.1
  • 67
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98:115-124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1
  • 68
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P., et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 69
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional co-activator PGC-1
    • Yoon J.C., et al. Control of hepatic gluconeogenesis through the transcriptional co-activator PGC-1. Nature 2001, 413:131-138.
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1
  • 70
    • 33744534726 scopus 로고    scopus 로고
    • GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
    • Lerin C., et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 2006, 3:429-438.
    • (2006) Cell Metab. , vol.3 , pp. 429-438
    • Lerin, C.1
  • 71
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1
    • Nemoto S., et al. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1. J. Biol. Chem. 2005, 280:16456-16460.
    • (2005) J. Biol. Chem. , vol.280 , pp. 16456-16460
    • Nemoto, S.1
  • 72
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 73
    • 1842610541 scopus 로고    scopus 로고
    • A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-CoA synthetase
    • Starai V.J., et al. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-CoA synthetase. Curr. Opin. Microbiol. 2004, 7:115-119.
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 115-119
    • Starai, V.J.1
  • 74
    • 34547697009 scopus 로고    scopus 로고
    • Metabolism, cytoskeleton and cellular signalling in the grip of protein Nepsilon - and O-acetylation
    • Yang X.J., Gregoire S. Metabolism, cytoskeleton and cellular signalling in the grip of protein Nepsilon - and O-acetylation. EMBO Rep. 2007, 8:556-562.
    • (2007) EMBO Rep. , vol.8 , pp. 556-562
    • Yang, X.J.1    Gregoire, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.