메뉴 건너뛰기




Volumn 24, Issue 8, 2010, Pages 1571-1581

A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models

Author keywords

ANN; Comparison; Evaporation; Penman; Priestley Taylor; Regression; Stephens and Stewart model

Indexed keywords

AIR TEMPERATURE; ARTIFICIAL NEURAL NETWORK; CATCHMENT SCALE; COMPARATIVE STUDIES; COMPARISON; DAILY PAN EVAPORATION; DATA SETS; FARM SCALE; MODEL DEVELOPMENT; MULTIPLE LINEAR REGRESSION MODELS; PAN EVAPORATION; PERFORMANCE EVALUATION; PRIESTLEY-TAYLOR; RELATIVE HUMIDITIES; STATISTICAL REGRESSION; WIND SPEED;

EID: 77952290338     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-009-9514-2     Document Type: Article
Times cited : (80)

References (25)
  • 1
    • 33947641864 scopus 로고    scopus 로고
    • An intelligent decision support system for management of floods
    • Ahmad S, Simonovic SP (2006) An intelligent decision support system for management of floods. Water Res Manage 20: 391-410.
    • (2006) Water Res Manage , vol.20 , pp. 391-410
    • Ahmad, S.1    Simonovic, S.P.2
  • 2
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic streamflow generation
    • Ahmed JA, Sarma AK (2009) Artificial neural network model for synthetic streamflow generation. Res Water Manage 21: 1015-1029.
    • (2009) Res Water Manage , vol.21 , pp. 1015-1029
    • Ahmed, J.A.1    Sarma, A.K.2
  • 4
    • 2242436799 scopus 로고
    • Evapotranspiration estimation in extremely arid areas
    • Al-Shalan A, Salih AMA (1987) Evapotranspiration estimation in extremely arid areas. J Irrig Drain Eng ASCE 113(4): 565-574.
    • (1987) J Irrig Drain Eng ASCE , vol.113 , Issue.4 , pp. 565-574
    • Al-Shalan, A.1    Salih, A.M.A.2
  • 5
    • 0034163592 scopus 로고    scopus 로고
    • Estimating daily pan evaporation with artificial neural networks
    • Bruton JM, McClendon RW, Hoogenboom G (2000) Estimating daily pan evaporation with artificial neural networks. Trans ASAE 43(2): 491-496.
    • (2000) Trans ASAE , vol.43 , Issue.2 , pp. 491-496
    • Bruton, J.M.1    McClendon, R.W.2    Hoogenboom, G.3
  • 8
    • 67649515826 scopus 로고    scopus 로고
    • Estimation of monthly pan evaporation using artificial neural networks and support vector machines
    • Eslamian SS, Gohari SA, Biabanaki M, Malekian R (2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. J Appl Sci 8(19): 3497-3502.
    • (2008) J Appl Sci , vol.8 , Issue.19 , pp. 3497-3502
    • Eslamian, S.S.1    Gohari, S.A.2    Biabanaki, M.3    Malekian, R.4
  • 9
    • 60849104783 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for municipal water consumption modeling
    • Firat M, Yurdusev MA, Turan ME (2009) Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Res Manage 23: 617-632.
    • (2009) Water Res Manage , vol.23 , pp. 617-632
    • Firat, M.1    Yurdusev, M.A.2    Turan, M.E.3
  • 10
    • 0024163168 scopus 로고
    • Evaporation from Lake Biwa
    • Ikebuchi S, Seki M, Ohtoh A (1988) Evaporation from Lake Biwa. J Hydrol 102: 427-449.
    • (1988) J Hydrol , vol.102 , pp. 427-449
    • Ikebuchi, S.1    Seki, M.2    Ohtoh, A.3
  • 11
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • Keskin ME, Terzi O (2006) Artificial neural network models of daily pan evaporation. J Hydrol Eng ASCE 11(1): 65-70.
    • (2006) J Hydrol Eng ASCE , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, O.2
  • 12
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kisi O (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329: 636-646.
    • (2006) J Hydrol , vol.329 , pp. 636-646
    • Kisi, O.1
  • 13
    • 67849114055 scopus 로고    scopus 로고
    • Modeling monthly evaporation using two different neural computing techniques
    • Kisi O (2009) Modeling monthly evaporation using two different neural computing techniques. Irrig Sci 27: 417-430.
    • (2009) Irrig Sci , vol.27 , pp. 417-430
    • Kisi, O.1
  • 14
    • 84957790817 scopus 로고
    • Natural evaporation from open water, bare soil, and grass
    • Penman HL (1948) Natural evaporation from open water, bare soil, and grass. Proc R Soc Lond 193: 120-145.
    • (1948) Proc R Soc Lond , vol.193 , pp. 120-145
    • Penman, H.L.1
  • 15
    • 0002173848 scopus 로고
    • On the assessment of surface heat flux and evaporation using large scale parameters
    • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100(2): 81-92.
    • (1972) Mon Weather Rev , vol.100 , Issue.2 , pp. 81-92
    • Priestley, C.H.B.1    Taylor, R.J.2
  • 16
    • 0034149040 scopus 로고    scopus 로고
    • An artificial neural network model for non-iterative calculation of the friction coefficient in open channel flow
    • Sablani SS, Shayya WH, Prashar SO (2001) An artificial neural network model for non-iterative calculation of the friction coefficient in open channel flow. Trans ASAE 16(2): 191-196.
    • (2001) Trans ASAE , vol.16 , Issue.2 , pp. 191-196
    • Sablani, S.S.1    Shayya, W.H.2    Prashar, S.O.3
  • 17
    • 28844436447 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India
    • Sarangi A, Bhattacharya AK (2005) Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India. Agric Water Manage 78: 195-208.
    • (2005) Agric Water Manage , vol.78 , pp. 195-208
    • Sarangi, A.1    Bhattacharya, A.K.2
  • 19
    • 33947708401 scopus 로고    scopus 로고
    • Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data
    • Singh RM, Datta B (2007) Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data. Water Res Manage 21: 557-572.
    • (2007) Water Res Manage , vol.21 , pp. 557-572
    • Singh, R.M.1    Datta, B.2
  • 20
    • 0026943457 scopus 로고
    • Equation for evaporation pan to evapotranspiration conversions
    • Snyder RL (1993) Equation for evaporation pan to evapotranspiration conversions. J Irrig Drain Eng ASCE 118(6): 977-980.
    • (1993) J Irrig Drain Eng ASCE , vol.118 , Issue.6 , pp. 977-980
    • Snyder, R.L.1
  • 22
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Mohana Rangan D, Saheb SM (2002) Modelling evaporation using an artificial neural network algorithm. Hydrol Process 16: 3189-3202.
    • (2002) Hydrol Process , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Mohana, R.D.3    Saheb, S.M.4
  • 23
    • 34249276350 scopus 로고    scopus 로고
    • Modelling of daily pan evaporation
    • Terzi O, Keskin ME (2005) Modelling of daily pan evaporation. J Appl Sci 5(2): 368-372.
    • (2005) J Appl Sci , vol.5 , Issue.2 , pp. 368-372
    • Terzi, O.1    Keskin, M.E.2
  • 25
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • Zhang B, Govindaraju R (2003) Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J Hydrol 273: 18-34.
    • (2003) J Hydrol , vol.273 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.