-
1
-
-
0000106469
-
Multicanonical Algorithms for First Order Phase Transitions
-
Ser. B
-
Berg, B. A., and Neuhaus, T. (1991), “Multicanonical Algorithms for First Order Phase Transitions,” Physics Letters, Ser. B, 267, 249–253.
-
(1991)
Physics Letters
, vol.267
, pp. 249-253
-
-
Berg, B.A.1
Neuhaus, T.2
-
3
-
-
0001561263
-
Bayesian Back-Propagation
-
Buntine, W. L., and Weigend, A. S. (1991), “Bayesian Back-Propagation,” Complex Systems 5, 603–643.
-
(1991)
Complex Systems
, vol.5
, pp. 603-643
-
-
Buntine, W.L.1
Weigend, A.S.2
-
4
-
-
0000506629
-
Bayesian Model Choice via Markov Chain Monte Carlo
-
Ser. B
-
Carlin, B., and Chib, S. (1993), “Bayesian Model Choice via Markov Chain Monte Carlo,” Journal of the Royal Statistical Society, Ser. B, 57, 473–484.
-
(1993)
Journal of the Royal Statistical Society
, vol.57
, pp. 473-484
-
-
Carlin, B.1
Chib, S.2
-
5
-
-
0003924731
-
-
New York: Springer-Verlag
-
Chen, M. H., Shao, Q. M., and Ibrahim, J. G. (2000), Monte Carlo Methods in Bayesian Computation, New York: Springer-Verlag.
-
(2000)
Monte Carlo Methods in Bayesian Computation
-
-
Chen, M.H.1
Shao, Q.M.2
Ibrahim, J.G.3
-
6
-
-
0041974049
-
Marginal Likelihood From the Gibbs Output
-
Chib, S. (1995), “Marginal Likelihood From the Gibbs Output,” Journal of American Statistical Association, 90, 1313–1321.
-
(1995)
Journal of American Statistical Association
, vol.90
, pp. 1313-1321
-
-
Chib, S.1
-
7
-
-
0024861871
-
Approximations by Superpositions of a Sigmoidal Function
-
Cybenko, G. (1989), “Approximations by Superpositions of a Sigmoidal Function,” Mathematics of Control, Signals and Systems, 2, 303–314.
-
(1989)
Mathematics of Control, Signals and Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
8
-
-
0003488043
-
Neural Network Based Models for Forecasting
-
J. G. Taylor, New York: Wiley
-
Ding, X., Canu, S., and Denoeux, T. (1996), “Neural Network Based Models for Forecasting,” in Neural Networks and Their Applications, ed. J. G. Taylor, New York: Wiley, pp. 153–167.
-
(1996)
Neural Networks and Their Applications
, pp. 153-167
-
-
Ding, X.1
Canu, S.2
Denoeux, T.3
-
9
-
-
0000308566
-
Real-Coded Genetic Algorithms and Interval-Schematai
-
G. J. E. Rawlins, San Mateo, CA: Morgan Kaufmann
-
Eshelman, L. J., and Schaffer, J. D. (1993), “Real-Coded Genetic Algorithms and Interval-Schematai,” in Foundation of Genetic Algorithms 2, ed. G. J. E. Rawlins, San Mateo, CA: Morgan Kaufmann, pp. 187–202.
-
(1993)
Foundation of Genetic Algorithms
, vol.2
, pp. 187-202
-
-
Eshelman, L.J.1
Schaffer, J.D.2
-
10
-
-
0000954353
-
Efficient Metropolis Jumping Rules
-
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, New York: Oxford University Press
-
Gelman, A., Roberts, R. O., and Gilks, W. R. (1996), “Efficient Metropolis Jumping Rules,” in Bayesian Statistics 5, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, New York: Oxford University Press.
-
(1996)
Bayesian Statistics
, vol.5
-
-
Gelman, A.1
Roberts, R.O.2
Gilks, W.R.3
-
11
-
-
0021518209
-
Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images
-
Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
12
-
-
0002795650
-
Markov Chain Monte Carlo Maximum Likelihood
-
E. M. Keramigas, Fairfax, VA: Interface Foundation
-
Geyer, C. J. (1991), “Markov Chain Monte Carlo Maximum Likelihood,” in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface ed. E. M. Keramigas, Fairfax, VA: Interface Foundation, pp. 156–163.
-
(1991)
Computing Science and Statistics: Proceedings of the 23Rd Symposium on the Interface
, pp. 156-163
-
-
Geyer, C.J.1
-
13
-
-
84950437936
-
Annealing Markov Chain Monte Carlo With Applications to Pedigree Analysis
-
Geyer, C. J., and Thompson, E. A. (1995), “Annealing Markov Chain Monte Carlo With Applications to Pedigree Analysis,” Journal of American Statistical Association, 90, 909–920.
-
(1995)
Journal of American Statistical Association
, vol.90
, pp. 909-920
-
-
Geyer, C.J.1
Thompson, E.A.2
-
14
-
-
0001119068
-
Adaptive Direction Sampling
-
Gilks, W. R., Roberts, G. O., and George, E. I. (1994), “Adaptive Direction Sampling,” The Statistician, 43, 179–189.
-
(1994)
The Statistician
, vol.43
, pp. 179-189
-
-
Gilks, W.R.1
Roberts, G.O.2
George, E.I.3
-
15
-
-
0003722376
-
-
Reading, MA: Addison-Wesley
-
Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, & Machine learning, Reading, MA: Addison-Wesley.
-
(1989)
Genetic Algorithms in Search, Optimization, & Machine Learning
-
-
Goldberg, D.E.1
-
16
-
-
77956889087
-
Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
-
Green, P. J. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711–732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
17
-
-
77956890234
-
Monte Carlo Sampling Methods Using Markov Chain and Their Applications
-
Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chain and Their Applications,” Biometrika, 57, 97–109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
18
-
-
0000860595
-
Neural Network Models for Time Series Forecasts
-
Hill, T., O’Connor, M., and Remus, W. (1996), “Neural Network Models for Time Series Forecasts,” Management Science, 42, 1082–1092.
-
(1996)
Management Science
, vol.42
, pp. 1082-1092
-
-
Hill, T.1
O’Connor, M.2
Remus, W.3
-
20
-
-
0024880831
-
Multilayer Feedforward Networks are Universal Approximators
-
Hornik, K., Stinchcombe, M., and White, H. (1989), “Multilayer Feedforward Networks are Universal Approximators,” Neural Networks, 2, 359–366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
21
-
-
0030516672
-
Exchange Monte Carlo Method and Application to Spin Glass Simulations
-
Hukushima, K., and Nemoto, K. (1996), “Exchange Monte Carlo Method and Application to Spin Glass Simulations,” Journal of the Physics Society of Japan, 65, 1604–1608.
-
(1996)
Journal of the Physics Society of Japan
, vol.65
, pp. 1604-1608
-
-
Hukushima, K.1
Nemoto, K.2
-
23
-
-
0043283343
-
Dynamic Weighting in Simulations of Spin Systems
-
Ser. A
-
Liang, F., and Wong, W. H. (1999), “Dynamic Weighting in Simulations of Spin Systems,” Physics Letters, Ser. A, 252, 257–262.
-
(1999)
Physics Letters
, vol.252
, pp. 257-262
-
-
Liang, F.1
Wong, W.H.2
-
24
-
-
0034403006
-
Evolutionary Monte Carlo Sampling: Applications to Cp Model Sampling and Change-point Problem
-
Liang, F., and Wong, W. H. (2000), “Evolutionary Monte Carlo Sampling: Applications to Cp Model Sampling and Change-point Problem,” Statistica Sinica, 10, 317–342.
-
(2000)
Statistica Sinica
, vol.10
, pp. 317-342
-
-
Liang, F.1
Wong, W.H.2
-
25
-
-
0442309554
-
The Use of Multiple-Try Method and Local Optimization in Metropolis Sampling
-
Liu, J. S., Liang F., and Wong, W. H. (2000), “The Use of Multiple-Try Method and Local Optimization in Metropolis Sampling,” Journal of American Statistical Association, 94, 121–134.
-
(2000)
Journal of American Statistical Association
, vol.94
, pp. 121-134
-
-
Liu, J.S.1
Liang, F.2
Wong, W.H.3
-
26
-
-
0002704818
-
A Practical Bayesian Framework for Backprop Networks
-
MacKay, D. J. C. (1992), “A Practical Bayesian Framework for Backprop Networks,” Neural Computation, 4, 448–472.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
Mackay, D.J.C.1
-
27
-
-
33644899039
-
Simulated Tempering: A New Monte Carlo Scheme
-
Marinari, E., and Parisi, G. (1992), “Simulated Tempering: A New Monte Carlo Scheme,” Europhysics Letters, 19, 451–458.
-
(1992)
Europhysics Letters
, vol.19
, pp. 451-458
-
-
Marinari, E.1
Parisi, G.2
-
28
-
-
0003496531
-
-
Cambridge, MA: MIT Press
-
Mehrotra, K., Mohan, C. K., and Ranka, S. (1996), Elements of Artificial Neural Networks, Cambridge, MA: MIT Press.
-
(1996)
Elements of Artificial Neural Networks
-
-
Mehrotra, K.1
Mohan, C.K.2
Ranka, S.3
-
29
-
-
21444451325
-
Simulating Ratios of Normalizing Constants via a Simple Identity: A Theoretical Exploration
-
Meng, X., and Wong, W. H. (1996), “Simulating Ratios of Normalizing Constants via a Simple Identity: A Theoretical Exploration,” Statistica Sinica, 6, 831–860.
-
(1996)
Statistica Sinica
, vol.6
, pp. 831-860
-
-
Meng, X.1
Wong, W.H.2
-
30
-
-
5744249209
-
Equation of State Calculations by Fast Computing Machines
-
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics, 21, 1087–1091.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
31
-
-
0347128520
-
Issues in Bayesian Analysis of Neural Network Models
-
Müller, P., and Insua, D. R. (1998), “Issues in Bayesian Analysis of Neural Network Models,” Neural Computation, 10, 749–770.
-
(1998)
Neural Computation
, vol.10
, pp. 749-770
-
-
Müller, P.1
Insua, D.R.2
-
32
-
-
0037591475
-
Bayesian Learning via Stochastic Dynamics
-
C. L. Giles, S. J. Hansn, and J. D. Cowan, San Francisco: Morgan Kaufmann
-
Neal, R. M. (1993), “Bayesian Learning via Stochastic Dynamics,” in Advances in Neural Information Processing Systems 5, eds. C. L. Giles, S. J. Hansn, and J. D. Cowan, San Francisco: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
-
-
Neal, R.M.1
-
35
-
-
0003066726
-
A Real-Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover
-
T. Bäck, San Francisco: Morgan Kaufmann
-
Ono, I., and Kobayashi, S. (1997), “A Real-Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover,” in Proceedings of the Seventh International Conference on Genetic Algorithms, ed. T. Bäck, San Francisco: Morgan Kaufmann, pp. 246–253.
-
(1997)
Proceedings of the Seventh International Conference on Genetic Algorithms
, pp. 246-253
-
-
Ono, I.1
Kobayashi, S.2
-
36
-
-
0002013327
-
Bayesian Model Comparison via Jump Diffusions
-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman and Hall
-
Phillips, D. B., and Smith, A. F. M. (1995), “Bayesian Model Comparison via Jump Diffusions,” in Markov Chain Monte Carlo in Practice, eds. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman and Hall, pp. 215–239.
-
(1995)
Markov Chain Monte Carlo in Practice
, pp. 215-239
-
-
Phillips, D.B.1
Smith, A.F.M.2
-
37
-
-
0001180165
-
Probes of Large-Scale Structures in the Corona Borealis Region
-
Postman, M., Huchra, J. P., and Geller, M. J. (1986), “Probes of Large-Scale Structures in the Corona Borealis Region,” The Astronomical Journal, 92, 1238–1247.
-
(1986)
The Astronomical Journal
, vol.92
, pp. 1238-1247
-
-
Postman, M.1
Huchra, J.P.2
Geller, M.J.3
-
38
-
-
0000940729
-
Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler
-
Ritter, C., and Tanner, M. A. (1992), “Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler,” Journal of the American Statistical Association, 87, 861–868.
-
(1992)
Journal of the American Statistical Association
, vol.87
, pp. 861-868
-
-
Ritter, C.1
Tanner, M.A.2
-
39
-
-
38149146212
-
Convergence of Adaptive Direction Sampling
-
Roberts, G. O., and Gilks, W. R. (1994), “Convergence of Adaptive Direction Sampling,” Journal of Multivariate Analysis, 49, 287–298.
-
(1994)
Journal of Multivariate Analysis
, vol.49
, pp. 287-298
-
-
Roberts, G.O.1
Gilks, W.R.2
-
40
-
-
0000795635
-
Density Estimation With Confidence Sets Exemplified by Superclusters and Voids in Galaxies
-
Roeder, K. (1990), “Density Estimation With Confidence Sets Exemplified by Superclusters and Voids in Galaxies,” Journal of the American Statistical Association, 85, 617–624.
-
(1990)
Journal of the American Statistical Association
, vol.85
, pp. 617-624
-
-
Roeder, K.1
-
41
-
-
0000646059
-
Learning Internal Representations by Error Propagation
-
D. Rumelhart and J. McClelland, Cambridge, MA: MIT Press
-
Rumelhart, D., Hinton, G., and McClelland, J. (1986), “Learning Internal Representations by Error Propagation,” in Parallel Distributed Processing, eds. D. Rumelhart and J. McClelland, Cambridge, MA: MIT Press, pp. 45–76.
-
(1986)
Parallel Distributed Processing
, pp. 45-76
-
-
Rumelhart, D.1
Hinton, G.2
McClelland, J.3
-
43
-
-
0031447220
-
Dynamic Weighting in Monte Carlo and Optimization
-
Wong, W. H., and Liang, F. (1997), “Dynamic Weighting in Monte Carlo and Optimization,” Proceedings of the National Academy of Sciences, 94, 14220–14224.
-
(1997)
Proceedings of the National Academy of Sciences
, vol.94
, pp. 14220-14224
-
-
Wong, W.H.1
Liang, F.2
-
44
-
-
0001403575
-
Genetic Algorithms for Real Parameter Optimization
-
G. J. E. Rawlins, San Mateo, CA: Morgan Kaufmann
-
Wright, A. H. (1991), “Genetic Algorithms for Real Parameter Optimization,” in Foundations of Genetic Algorithms 1, ed. G. J. E. Rawlins, San Mateo, CA: Morgan Kaufmann, pp. 205–218.
-
(1991)
Foundations of Genetic Algorithms
, vol.1
, pp. 205-218
-
-
Wright, A.H.1
|