메뉴 건너뛰기




Volumn 6, Issue , 2012, Pages

Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison

Author keywords

Bayesian inference; Gene regulation; Gene regulatory network; Systems biology; Transcription factor

Indexed keywords

DROSOPHILA MELANOGASTER;

EID: 84861535774     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-6-53     Document Type: Article
Times cited : (22)

References (65)
  • 1
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • 1828749, 17299415
    • Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to infer gene networks from expression profiles. Mol Syst Biol 2007, 3:78. [http://dx.doi.org/10.1038/msb4100120], 1828749, 17299415.
    • (2007) Mol Syst Biol , vol.3 , pp. 78
    • Bansal, M.1    Belcastro, V.2    Ambesi-Impiombato, A.3    di Bernardo, D.4
  • 2
    • 38349030979 scopus 로고    scopus 로고
    • Inferring transcriptional interactions and regulator activities from experimental data
    • Wang RS, Zhang XS, Chen L. Inferring transcriptional interactions and regulator activities from experimental data. Mol Cells 2007, 24(3):307-315.
    • (2007) Mol Cells , vol.24 , Issue.3 , pp. 307-315
    • Wang, R.S.1    Zhang, X.S.2    Chen, L.3
  • 3
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Microbiol 2010, 8(10):717-729. [http://dx. doi.org/10.1038/nrmicro2419].
    • (2010) Nat Rev Microbiol , vol.8 , Issue.10 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 4
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • 10.1073/pnas.0913357107, 2851985, 20308593
    • Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA 2010, 107(14):6286-6291. [http://dx.doi. org/10.1073/pnas.0913357107], 10.1073/pnas.0913357107, 2851985, 20308593.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.14 , pp. 6286-6291
    • Marbach, D.1    Prill, R.J.2    Schaffter, T.3    Mattiussi, C.4    Floreano, D.5    Stolovitzky, G.6
  • 5
    • 84859149116 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles, revisited
    • 10.1098/rsfs.2011.0053, 3262295, 23226586
    • Penfold C, Wild D. How to infer gene networks from expression profiles, revisited. Interface Focus 2011, 1(6):857-870. 10.1098/rsfs.2011.0053, 3262295, 23226586.
    • (2011) Interface Focus , vol.1 , Issue.6 , pp. 857-870
    • Penfold, C.1    Wild, D.2
  • 6
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • 10.1126/science.278.5338.680, 9381177
    • DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278(5338):680-686. 10.1126/science.278.5338.680, 9381177.
    • (1997) Science , vol.278 , Issue.5338 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 7
    • 7744225947 scopus 로고    scopus 로고
    • Transcriptional networks: reverse-engineering gene regulation on a global scale
    • 10.1016/j.mib.2004.10.009, 15556037
    • Chua G, Robinson MD, Morris Q, Hughes TR. Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol 2004, 7(6):638-646. [http://dx.doi.org/10.1016/j.mib.2004.10. 009], 10.1016/j.mib.2004.10.009, 15556037.
    • (2004) Curr Opin Microbiol , vol.7 , Issue.6 , pp. 638-646
    • Chua, G.1    Robinson, M.D.2    Morris, Q.3    Hughes, T.R.4
  • 8
    • 33747078457 scopus 로고    scopus 로고
    • Identifying transcription factor functions and targets by phenotypic activation
    • 10.1073/pnas.0605140103, 1567694, 16880382
    • Chua G, Morris QD, Sopko R, Robinson MD, Ryan O, Chan ET, Frey BJ, Andrews BJ, Boone C, Hughes TR. Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci USA 2006, 103(32):12045-12050. [http://dx.doi.org/10.1073/pnas. 0605140103], 10.1073/pnas.0605140103, 1567694, 16880382.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.32 , pp. 12045-12050
    • Chua, G.1    Morris, Q.D.2    Sopko, R.3    Robinson, M.D.4    Ryan, O.5    Chan, E.T.6    Frey, B.J.7    Andrews, B.J.8    Boone, C.9    Hughes, T.R.10
  • 11
    • 79953044960 scopus 로고    scopus 로고
    • Genome-wide transcription factor binding: beyond direct target regulation
    • 10.1016/j.tig.2011.01.001, 3068217, 21295369
    • MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 2011, 27(4):141-148. [http://dx.doi.org/10.1016/j.tig.2011.01.001], 10.1016/j.tig.2011.01.001, 3068217, 21295369.
    • (2011) Trends Genet , vol.27 , Issue.4 , pp. 141-148
    • MacQuarrie, K.L.1    Fong, A.P.2    Morse, R.H.3    Tapscott, S.J.4
  • 12
    • 70449132583 scopus 로고    scopus 로고
    • Combinatorial binding predicts spatio-temporal cis-regulatory activity
    • 10.1038/nature08531, 19890324
    • Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EEM. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 2009, 462(7269):65-70. [http://dx.doi.org/10.1038/nature08531], 10.1038/nature08531, 19890324.
    • (2009) Nature , vol.462 , Issue.7269 , pp. 65-70
    • Zinzen, R.P.1    Girardot, C.2    Gagneur, J.3    Braun, M.4    Furlong, E.E.M.5
  • 13
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • 10.1093/bioinformatics/bti014, 15353451
    • Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 2005, 21(3):349-356. [http://dx.doi.org/10. 1093/bioinformatics/bti014], 10.1093/bioinformatics/bti014, 15353451.
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 14
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • 10.1093/bioinformatics/btl391, 16844710
    • Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 2006, 22(20):2523-2531. [http://dx.doi.org/10.1093/ bioinformatics/btl391], 10.1093/bioinformatics/btl391, 16844710.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 15
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • 10.1186/gb-2006-7-5-r36, 1779511, 16686963
    • Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 2006, 7(5):R36. [http://dx.doi.org/10.1186/gb-2006-7-5-r36], 10.1186/gb-2006-7-5-r36, 1779511, 16686963.
    • (2006) Genome Biol , vol.7 , Issue.5
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6    Thorsson, V.7
  • 16
    • 34548388925 scopus 로고    scopus 로고
    • Inference of gene networks from temporal gene expression profiles
    • 10.1049/iet-syb:20060079, 17907680
    • Bansal M, di Bernardo D. Inference of gene networks from temporal gene expression profiles. IET Syst Biol 2007, 1(5):306-312. 10.1049/iet-syb:20060079, 17907680.
    • (2007) IET Syst Biol , vol.1 , Issue.5 , pp. 306-312
    • Bansal, M.1    di Bernardo, D.2
  • 17
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
    • 10.1093/bioinformatics/btp511, 19706742
    • Aijö T, Lähdesmäki H. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 2009, 25(22):2937-2944. [http://dx.doi.org/10.1093/ bioinformatics/btp511], 10.1093/bioinformatics/btp511, 19706742.
    • (2009) Bioinformatics , vol.25 , Issue.22 , pp. 2937-2944
    • Aijö, T.1    Lähdesmäki, H.2
  • 18
    • 33745038921 scopus 로고    scopus 로고
    • Ranked prediction of p53 targets using hidden variable dynamic modeling
    • 10.1186/gb-2006-7-3-r25, 1557743, 16584535
    • Barenco M, Tomescu D, Brewer D, Callard R, Stark J, Hubank M. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol 2006, 7(3):R25. 10.1186/gb-2006-7-3-r25, 1557743, 16584535.
    • (2006) Genome Biol , vol.7 , Issue.3
    • Barenco, M.1    Tomescu, D.2    Brewer, D.3    Callard, R.4    Stark, J.5    Hubank, M.6
  • 19
    • 44849118743 scopus 로고    scopus 로고
    • Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering
    • 10.1101/gr.073601.107, 2413161, 18441228
    • Della Gatta G, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C, di Bernardo D. Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Res 2008, 18(6):939-948. [http://dx.doi.org/10. 1101/gr.073601.107], 10.1101/gr.073601.107, 2413161, 18441228.
    • (2008) Genome Res , vol.18 , Issue.6 , pp. 939-948
    • Della Gatta, G.1    Bansal, M.2    Ambesi-Impiombato, A.3    Antonini, D.4    Missero, C.5    di Bernardo, D.6
  • 20
    • 77952328474 scopus 로고    scopus 로고
    • Model-based method for transcription factor target identification with limited data
    • 10.1073/pnas.0914285107, 2867914, 20385836
    • Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EEM, Lawrence ND, Rattray M. Model-based method for transcription factor target identification with limited data. Proc Natl Acad Sci USA 2010, 107(17):7793-7798. 10.1073/pnas.0914285107, 2867914, 20385836.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.17 , pp. 7793-7798
    • Honkela, A.1    Girardot, C.2    Gustafson, E.H.3    Liu, Y.H.4    Furlong, E.E.M.5    Lawrence, N.D.6    Rattray, M.7
  • 21
    • 49549105346 scopus 로고    scopus 로고
    • Gaussian process modelling of latent chemical species: applications to inferring transcription factor Activities
    • 10.1093/bioinformatics/btn278, 18689843
    • Gao P, Honkela A, Rattray M, Lawrence ND. Gaussian process modelling of latent chemical species: applications to inferring transcription factor Activities. Bioinformatics 2008, 24(16):i70-i75. 10.1093/bioinformatics/btn278, 18689843.
    • (2008) Bioinformatics , vol.24 , Issue.16
    • Gao, P.1    Honkela, A.2    Rattray, M.3    Lawrence, N.D.4
  • 22
    • 79953305445 scopus 로고    scopus 로고
    • Tigre: Transcription factor inference through Gaussian process reconstruction of expression for Bioconductor
    • 10.1093/bioinformatics/btr057, 21300702
    • Honkela A, Gao P, Ropponen J, Rattray M, Lawrence ND. tigre: Transcription factor inference through Gaussian process reconstruction of expression for Bioconductor. Bioinformatics 2011, 27(7):1026-1027. [http://dx.doi.org/10.1093/bioinformatics/btr057], 10.1093/bioinformatics/btr057, 21300702.
    • (2011) Bioinformatics , vol.27 , Issue.7 , pp. 1026-1027
    • Honkela, A.1    Gao, P.2    Ropponen, J.3    Rattray, M.4    Lawrence, N.D.5
  • 25
    • 78149421254 scopus 로고    scopus 로고
    • DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models
    • 10.1371/journal.pone.0013397, 2963605, 21049040
    • Greenfield A, Madar A, Ostrer H, Bonneau R. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 2010, 5(10):e13397. [http://dx.doi.org/ 10.1371/journal.pone.0013397], 10.1371/journal.pone.0013397, 2963605, 21049040.
    • (2010) PLoS One , vol.5 , Issue.10
    • Greenfield, A.1    Madar, A.2    Ostrer, H.3    Bonneau, R.4
  • 27
    • 0037325058 scopus 로고    scopus 로고
    • A sigmoidal transcriptional response: cooperativity, synergy and dosage effects
    • 10.1017/S1464793102006036, 12620064
    • Veitia RA. A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol Rev Camb Philos Soc 2003, 78:149-170. 10.1017/S1464793102006036, 12620064.
    • (2003) Biol Rev Camb Philos Soc , vol.78 , pp. 149-170
    • Veitia, R.A.1
  • 28
    • 0032437107 scopus 로고    scopus 로고
    • Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins
    • 10.1146/annurev.cellbio.14.1.167, 9891782
    • Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998, 14:167-196. [http://dx.doi.org/10.1146/annurev.cellbio.14.1.167], 10.1146/annurev.cellbio.14.1.167, 9891782.
    • (1998) Annu Rev Cell Dev Biol , vol.14 , pp. 167-196
    • Black, B.L.1    Olson, E.N.2
  • 29
    • 0029994419 scopus 로고    scopus 로고
    • Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C
    • 231253, 8649370
    • Molkentin JD, Black BL, Martin JF, Olson EN. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol 1996, 16(6):2627-2636. 231253, 8649370.
    • (1996) Mol Cell Biol , vol.16 , Issue.6 , pp. 2627-2636
    • Molkentin, J.D.1    Black, B.L.2    Martin, J.F.3    Olson, E.N.4
  • 30
    • 0034846639 scopus 로고    scopus 로고
    • Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development
    • Castanon I, Stetina SV, Kass J, Baylies MK. Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development 2001, 128(16):3145-3159.
    • (2001) Development , vol.128 , Issue.16 , pp. 3145-3159
    • Castanon, I.1    Stetina, S.V.2    Kass, J.3    Baylies, M.K.4
  • 31
    • 0036011244 scopus 로고    scopus 로고
    • The beta 3 tubulin gene is a direct target of bagpipe and biniou in the visceral mesoderm of Drosophila
    • 10.1016/S0925-4773(02)00063-1, 12175492
    • Zaffran S, Frasch M. The beta 3 tubulin gene is a direct target of bagpipe and biniou in the visceral mesoderm of Drosophila. Mech Dev 2002, 114(1-2):85-93. 10.1016/S0925-4773(02)00063-1, 12175492.
    • (2002) Mech Dev , vol.114 , Issue.1-2 , pp. 85-93
    • Zaffran, S.1    Frasch, M.2
  • 32
    • 22144498434 scopus 로고    scopus 로고
    • The homeodomain of Tinman mediates homo- and heterodimerization of NK proteins
    • 10.1016/j.bbrc.2005.06.090, 16004970
    • Zaffran S, Frasch M. The homeodomain of Tinman mediates homo- and heterodimerization of NK proteins. Biochem Biophys Res Commun 2005, 334(2):361-369. [http://dx.doi.org/10.1016/j.bbrc.2005.06.090], 10.1016/j.bbrc.2005.06.090, 16004970.
    • (2005) Biochem Biophys Res Commun , vol.334 , Issue.2 , pp. 361-369
    • Zaffran, S.1    Frasch, M.2
  • 34
    • 84871436750 scopus 로고    scopus 로고
    • Modelling software and a browser of Drosophila results
    • Modelling software and a browser of Drosophila results. [http://www.bioinf.manchester.ac.uk/resources/tiger/multitf/].
  • 35
    • 78651343711 scopus 로고    scopus 로고
    • DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila
    • 3013689, 21036869, Database issue
    • Murali T, Pacifico S, Yu J, Guest S, Roberts GG, Finley RL. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res 2011, 39(Database issue):D736-D743. [http://dx.doi.org/10.1093/nar/ gkq1092], 3013689, 21036869.
    • (2011) Nucleic Acids Res , vol.39
    • Murali, T.1    Pacifico, S.2    Yu, J.3    Guest, S.4    Roberts, G.G.5    Finley, R.L.6
  • 36
    • 79955780958 scopus 로고    scopus 로고
    • IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2
    • 10.1371/journal.pone.0019412, 3084854, 21559372
    • Su YW, Xie TX, Sano D, Myers JN. IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2. PLoS One 2011, 6(4):e19412. [http://dx.doi.org/10. 1371/journal.pone.0019412], 10.1371/journal.pone.0019412, 3084854, 21559372.
    • (2011) PLoS One , vol.6 , Issue.4
    • Su, Y.W.1    Xie, T.X.2    Sano, D.3    Myers, J.N.4
  • 37
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
    • 10.1196/annals.1407.021, 17925349
    • Stolovitzky G, Monroe D, Califano A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann N Y Acad Sci 2007, 1115:1-22. [http://dx.doi.org/10.1196/ annals.1407.021], 10.1196/annals.1407.021, 17925349.
    • (2007) Ann N Y Acad Sci , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 38
    • 71449104459 scopus 로고    scopus 로고
    • Dissection of a complex transcriptional response using genome-wide transcriptional modelling
    • 2795478, 19920812
    • Barenco M, Brewer D, Papouli E, Tomescu D, Callard R, Stark J, Hubank M. Dissection of a complex transcriptional response using genome-wide transcriptional modelling. Mol Syst Biol 2009, 5:327. [http://dx.doi.org/10.1038/msb.2009.84], 2795478, 19920812.
    • (2009) Mol Syst Biol , vol.5 , pp. 327
    • Barenco, M.1    Brewer, D.2    Papouli, E.3    Tomescu, D.4    Callard, R.5    Stark, J.6    Hubank, M.7
  • 40
    • 65549151303 scopus 로고    scopus 로고
    • Switching regulatory models of cellular stress response
    • 10.1093/bioinformatics/btp138, 19279066
    • Sanguinetti G, Ruttor A, Opper M, Archambeau C. Switching regulatory models of cellular stress response. Bioinformatics 2009, 25(10):1280-1286. [http://dx.doi.org/10.1093/bioinformatics/btp138], 10.1093/bioinformatics/btp138, 19279066.
    • (2009) Bioinformatics , vol.25 , Issue.10 , pp. 1280-1286
    • Sanguinetti, G.1    Ruttor, A.2    Opper, M.3    Archambeau, C.4
  • 42
    • 83855162680 scopus 로고    scopus 로고
    • Efficient Sampling for Gaussian Process Inference using Control Variables
    • Koller D, Schuurmans D, Bengio Y, Bottou L
    • Titsias MK, Lawrence ND, Rattray M. Efficient Sampling for Gaussian Process Inference using Control Variables. Advances in Neural Information Processing Systems 21 2009, 1681-1688. Koller D, Schuurmans D, Bengio Y, Bottou L.
    • (2009) Advances in Neural Information Processing Systems 21 , pp. 1681-1688
    • Titsias, M.K.1    Lawrence, N.D.2    Rattray, M.3
  • 43
    • 34249856850 scopus 로고    scopus 로고
    • Bayesian model-based inference of transcription factor activity
    • 10.1186/1471-2105-8-S2-S2, 2230503, 18269696
    • Rogers S, Khanin R, Girolami M. Bayesian model-based inference of transcription factor activity. BMC Bioinformatics 2007, 8(Suppl 2):S2. 10.1186/1471-2105-8-S2-S2, 2230503, 18269696.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Rogers, S.1    Khanin, R.2    Girolami, M.3
  • 45
    • 0041974049 scopus 로고
    • Marginal Likelihood from the Gibbs Output
    • Chib S. Marginal Likelihood from the Gibbs Output. J Roy Stat Soc B 1995, 90(432):1313-1321.
    • (1995) J Roy Stat Soc B , vol.90 , Issue.432 , pp. 1313-1321
    • Chib, S.1
  • 46
    • 32544457104 scopus 로고    scopus 로고
    • Least absolute regression network analysis of the murine osteoblast differentiation network
    • 10.1093/bioinformatics/bti816, 16332709
    • van Someren EP, Vaes BLT, Steegenga WT, Sijbers AM, Dechering KJ, Reinders MJT. Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics 2006, 22(4):477-484. 10.1093/bioinformatics/bti816, 16332709.
    • (2006) Bioinformatics , vol.22 , Issue.4 , pp. 477-484
    • van Someren, E.P.1    Vaes, B.L.T.2    Steegenga, W.T.3    Sijbers, A.M.4    Dechering, K.J.5    Reinders, M.J.T.6
  • 47
    • 78149461178 scopus 로고    scopus 로고
    • DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator
    • 10.1371/journal.pone.0009803, 2842436, 20339551
    • Madar A, Greenfield A, Vanden-Eijnden E, Bonneau R. DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 2010, 5(3):e9803. [http://dx.doi.org/10.1371/ journal.pone.0009803], 10.1371/journal.pone.0009803, 2842436, 20339551.
    • (2010) PLoS One , vol.5 , Issue.3
    • Madar, A.1    Greenfield, A.2    Vanden-Eijnden, E.3    Bonneau, R.4
  • 48
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive MCMC
    • Andrieu C, Thoms J. A tutorial on adaptive MCMC. Stat Comput 2008, 18:343-373.
    • (2008) Stat Comput , vol.18 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 49
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population MCMC
    • Calderhead B, Girolami MA. Estimating Bayes factors via thermodynamic integration and population MCMC. Comput Stat Data An 2009, 53(12):4028-4045.
    • (2009) Comput Stat Data An , vol.53 , Issue.12 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.A.2
  • 50
    • 33645558077 scopus 로고    scopus 로고
    • Robust Markov chain Monte carlo methods for spatial generalized linear mixed models
    • Sköld, Sköld
    • Christensen OF, Roberts GO, , . Sköld, Sköld Robust Markov chain Monte carlo methods for spatial generalized linear mixed models. J Comput Graph Stat 2006, 15:1-17. Sköld, Sköld.
    • (2006) J Comput Graph Stat , vol.15 , pp. 1-17
    • Christensen, O.F.1    Roberts, G.O.2
  • 51
    • 28844454252 scopus 로고    scopus 로고
    • Parallel tempering: Theory, applications, and new perspectives
    • Earl DJ, Deem MW. Parallel tempering: Theory, applications, and new perspectives. Phys Chem Chem Phys 2005, 7(23):3910-3916.
    • (2005) Phys Chem Chem Phys , vol.7 , Issue.23 , pp. 3910-3916
    • Earl, D.J.1    Deem, M.W.2
  • 52
    • 42149143421 scopus 로고    scopus 로고
    • Marginal likelihood estimation via power posteriors
    • Friel N, Pettitt AN. Marginal likelihood estimation via power posteriors. J Roy Stat Soc B 2008, 70(3):589-607.
    • (2008) J Roy Stat Soc B , vol.70 , Issue.3 , pp. 589-607
    • Friel, N.1    Pettitt, A.N.2
  • 53
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: from importance sampling to bridge sampling to path sampling
    • Gelman A, Meng XL. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci 1998, 13(2):163-185.
    • (1998) Stat Sci , vol.13 , Issue.2 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 54
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • Oxford: Oxford University Press, Bernardo JM, Berger JO, David AF, Smith AFM
    • Gelman A, Roberts GO, Gilks WR. Efficient Metropolis jumping rules. Bayesian Statistics. Volume 5 1996, 599-607. Oxford: Oxford University Press, Bernardo JM, Berger JO, David AF, Smith AFM.
    • (1996) Bayesian Statistics. Volume 5 , pp. 599-607
    • Gelman, A.1    Roberts, G.O.2    Gilks, W.R.3
  • 55
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci 1992, 7(4):457-472.
    • (1992) Stat Sci , vol.7 , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 56
    • 84972511893 scopus 로고
    • Practical Markov Chain Monte Carlo
    • Geyer CJ. Practical Markov Chain Monte Carlo. Stat Sci 1992, 7(4):473-483.
    • (1992) Stat Sci , vol.7 , Issue.4 , pp. 473-483
    • Geyer, C.J.1
  • 57
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    • Girolami M, Calderhead B. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J Roy Stat Soc B 2011, 73(2):123-214.
    • (2011) J Roy Stat Soc B , vol.73 , Issue.2 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 58
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • Kuss M, Rasmussen CE. Assessing approximate inference for binary Gaussian process classification. J Mach Learn Res 2005, 6:1679-1704.
    • (2005) J Mach Learn Res , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2
  • 59
    • 85162070336 scopus 로고    scopus 로고
    • Slice sampling covariance hyperparameters of latent Gaussian models
    • Lafferty J, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A
    • Murray I, Adams RP. Slice sampling covariance hyperparameters of latent Gaussian models. Advances in, Neural Information Processing Systems 23 2010, 1732-1740. Lafferty J, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A.
    • (2010) Advances in, Neural Information Processing Systems 23 , pp. 1732-1740
    • Murray, I.1    Adams, R.P.2
  • 61
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • Neal RM. Annealed importance sampling. Stat Comput 1998, 11:125-139.
    • (1998) Stat Comput , vol.11 , pp. 125-139
    • Neal, R.M.1
  • 64
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Roberts GO, Gelman A, Gilks WR. Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann Appl Probab 1996, 7:110-120.
    • (1996) Ann Appl Probab , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.