-
2
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent. Part II
-
Caputo M. Linear models of dissipation whose Q is almost frequency independent. Part II. J. Roy. Astr. Soc. 13 (1967) 529-539
-
(1967)
J. Roy. Astr. Soc.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
3
-
-
0001553919
-
Fractional diffusion equation and wave equations
-
Schneider W., and Wyss W. Fractional diffusion equation and wave equations. J. Math. Phys. 30 (1989) 134-144
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.1
Wyss, W.2
-
5
-
-
84981825145
-
Defintion of physically consistent damping laws with fractional derivatives
-
Beyer H., and Kempfle S. Defintion of physically consistent damping laws with fractional derivatives. Z. Angew Math. Mech. 75 (1995) 623-635
-
(1995)
Z. Angew Math. Mech.
, vol.75
, pp. 623-635
-
-
Beyer, H.1
Kempfle, S.2
-
6
-
-
0030464353
-
Fractional relaxation-oscilation and fractional diffusion-wave phenomena
-
Mainardi F. Fractional relaxation-oscilation and fractional diffusion-wave phenomena. Chaos, Solitons Fractals 7 (1996) 1461-1477
-
(1996)
Chaos, Solitons Fractals
, vol.7
, pp. 1461-1477
-
-
Mainardi, F.1
-
7
-
-
34548407153
-
-
Y. Luchko, R. Gorenflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, (1998).
-
-
-
-
9
-
-
32644481603
-
The time-fractional diffusion equation and fractional advection-dispersion equation
-
Huang F., and Liu F. The time-fractional diffusion equation and fractional advection-dispersion equation. ANZIAM J. 46 (2005) 1-14
-
(2005)
ANZIAM J.
, vol.46
, pp. 1-14
-
-
Huang, F.1
Liu, F.2
-
10
-
-
19944370478
-
The fundamental solution of the spcae-time fractional advection-dispersion equation
-
Huang F., and Liu F. The fundamental solution of the spcae-time fractional advection-dispersion equation. J. Appl. Math. Comput. 18 2 (2005) 339-350
-
(2005)
J. Appl. Math. Comput.
, vol.18
, Issue.2
, pp. 339-350
-
-
Huang, F.1
Liu, F.2
-
11
-
-
27744514614
-
Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
-
Momani S. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos, Solitons Fractals 28 4 (2006) 930-937
-
(2006)
Chaos, Solitons Fractals
, vol.28
, Issue.4
, pp. 930-937
-
-
Momani, S.1
-
12
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 1 7 (2006) 15-27
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.1
, Issue.7
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
-
13
-
-
33744981446
-
Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
-
Momani S., and Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177 2 (2006) 488-494
-
(2006)
Appl. Math. Comput.
, vol.177
, Issue.2
, pp. 488-494
-
-
Momani, S.1
Odibat, Z.2
-
14
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons Fractals 31 5 (2007) 1248-1255
-
(2007)
Chaos, Solitons Fractals
, vol.31
, Issue.5
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
15
-
-
33749512364
-
Approximate solutions for boundary value problems of time-fractional wave equation
-
Odibat Z., and Momani S. Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181 1 (2006) 767-774
-
(2006)
Appl. Math. Comput.
, vol.181
, Issue.1
, pp. 767-774
-
-
Odibat, Z.1
Momani, S.2
-
16
-
-
0036283904
-
An approximate solution for one-dimensional weakly nonlinear oscillations
-
Marinca V. An approximate solution for one-dimensional weakly nonlinear oscillations. Int. J. Nonlinear Sci. Numer. Simul. 3 2 (2002) 107-110
-
(2002)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.3
, Issue.2
, pp. 107-110
-
-
Marinca, V.1
-
17
-
-
17844400075
-
Search for variational principles in electrodynamics by Lagrange method
-
Hao T.H. Search for variational principles in electrodynamics by Lagrange method. Int. J. Nonlinear Sci. Numer. Simul. 6 2 (2005) 209-210
-
(2005)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.6
, Issue.2
, pp. 209-210
-
-
Hao, T.H.1
-
18
-
-
24144494623
-
An explicit and numerical solutions of the fractional KdV equation
-
Momani S. An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70 2 (2005) 110-1118
-
(2005)
Math. Comput. Simul.
, vol.70
, Issue.2
, pp. 110-1118
-
-
Momani, S.1
-
19
-
-
24944474278
-
Application of He's variational iteration method to Helmholtz equation
-
Momani S., and Abuasad S. Application of He's variational iteration method to Helmholtz equation. Chaos, Solitons Fractals 27 5 (2006) 1119-1123
-
(2006)
Chaos, Solitons Fractals
, vol.27
, Issue.5
, pp. 1119-1123
-
-
Momani, S.1
Abuasad, S.2
-
20
-
-
0006990947
-
Variational iteration method for delay differential equations
-
He J.H. Variational iteration method for delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 2 4 (1997) 235-236
-
(1997)
Commun. Nonlinear Sci. Numer. Simul.
, vol.2
, Issue.4
, pp. 235-236
-
-
He, J.H.1
-
21
-
-
0031441505
-
Semi-inverse method of establishing generalized principles for fluid mechanics with emphasis on turbomachinery aerodynamics
-
He J.H. Semi-inverse method of establishing generalized principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet-Engines 14 1 (1997) 23-28
-
(1997)
Int. J. Turbo Jet-Engines
, vol.14
, Issue.1
, pp. 23-28
-
-
He, J.H.1
-
22
-
-
0032308350
-
Approximate solution of non linear differential equations with convolution product nonlinearities
-
He J.H. Approximate solution of non linear differential equations with convolution product nonlinearities. Comput. Meth. Appl. Mech. Eng. 167 (1998) 69-73
-
(1998)
Comput. Meth. Appl. Mech. Eng.
, vol.167
, pp. 69-73
-
-
He, J.H.1
-
23
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Meth. Appl. Mech. Eng. 167 (1998) 57-68
-
(1998)
Comput. Meth. Appl. Mech. Eng.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
24
-
-
0000092673
-
Variational iteration method - a kind of non-linear analytical technique: some examples
-
He J.H. Variational iteration method - a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 34 (1999) 699-708
-
(1999)
Int. J. Nonlinear Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
25
-
-
0040184009
-
Variational iteration method for autonomous ordinary differential systems
-
He J.H. Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114 (2000) 115-123
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 115-123
-
-
He, J.H.1
-
26
-
-
0035617688
-
Variational theory for linear magneto-electro-elasticity
-
He J.H. Variational theory for linear magneto-electro-elasticity. Int. J. Nonlinear Sci. Numer. Simul. 2 4 (2001) 309-316
-
(2001)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.2
, Issue.4
, pp. 309-316
-
-
He, J.H.1
-
27
-
-
0038772257
-
Variational principle for Nano thin film lubrication
-
He J.H. Variational principle for Nano thin film lubrication. Int. J. Nonlinear Sci. Numer. Simul. 4 3 (2003) 313-314
-
(2003)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.4
, Issue.3
, pp. 313-314
-
-
He, J.H.1
-
28
-
-
0041621600
-
Variational principle for some nonlinear partial differential equations with variable coefficients
-
He J.H. Variational principle for some nonlinear partial differential equations with variable coefficients. Chaos, Solitons Fractals 19 4 (2004) 847-851
-
(2004)
Chaos, Solitons Fractals
, vol.19
, Issue.4
, pp. 847-851
-
-
He, J.H.1
-
29
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135 (1988) 501-544
-
(1988)
J. Math. Anal. Appl.
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
31
-
-
0347450513
-
A new algorithm for calculating Adomian polynomials for nonlinear operators
-
Wazwaz A. A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 111 (2000) 53-69
-
(2000)
Appl. Math. Comput.
, vol.111
, pp. 53-69
-
-
Wazwaz, A.1
-
32
-
-
0035882676
-
A new modification of the Adomian decomposition method for linear and nonlinear operators
-
Wazwaz A., and El-Sayed S. A new modification of the Adomian decomposition method for linear and nonlinear operators. Appl. Math. Comput. 122 (2001) 393-405
-
(2001)
Appl. Math. Comput.
, vol.122
, pp. 393-405
-
-
Wazwaz, A.1
El-Sayed, S.2
-
33
-
-
0002588102
-
Nonlinear dynamical systems: On the accuracy of Adomian's decomposition method
-
Rèpaci A. Nonlinear dynamical systems: On the accuracy of Adomian's decomposition method. Appl. Math. Lett. 3 3 (1990) 35-39
-
(1990)
Appl. Math. Lett.
, vol.3
, Issue.3
, pp. 35-39
-
-
Rèpaci, A.1
-
34
-
-
1142300799
-
Variational approach to nonlinear electrochemical system
-
Liu H.M. Variational approach to nonlinear electrochemical system. Int. J. Nonlinear Sci. Numer. Simul. 5 1 (2004) 95-96
-
(2004)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.5
, Issue.1
, pp. 95-96
-
-
Liu, H.M.1
-
35
-
-
4243080806
-
Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method
-
Liu H.M. Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method. Chaos, Solitons Fractals 23 2 (2005) 573-576
-
(2005)
Chaos, Solitons Fractals
, vol.23
, Issue.2
, pp. 573-576
-
-
Liu, H.M.1
-
36
-
-
0006996396
-
General use of the Lagrange multiplier in non-linear mathematical physics
-
Nemat-Nasser S. (Ed), Pergamon Press, Oxford
-
Inokuti M., Sekine H., and Mura T. General use of the Lagrange multiplier in non-linear mathematical physics. In: Nemat-Nasser S. (Ed). Variational Method in the Mechanics of Solids (1978), Pergamon Press, Oxford 156-162
-
(1978)
Variational Method in the Mechanics of Solids
, pp. 156-162
-
-
Inokuti, M.1
Sekine, H.2
Mura, T.3
-
37
-
-
84970868898
-
Convergence of Adomian's method
-
Cherruault Y. Convergence of Adomian's method. Kybernetes 18 (1989) 31-38
-
(1989)
Kybernetes
, vol.18
, pp. 31-38
-
-
Cherruault, Y.1
-
38
-
-
0000395259
-
Decomposition methods: A new proof of convergence
-
Cherruault Y., and Adomian G. Decomposition methods: A new proof of convergence. Math. Comput. Modell. 18 (1993) 103-106
-
(1993)
Math. Comput. Modell.
, vol.18
, pp. 103-106
-
-
Cherruault, Y.1
Adomian, G.2
-
39
-
-
0000487641
-
New ideas for proving convergence of decomposition methods
-
Abbaoui K., and Cherruault Y. New ideas for proving convergence of decomposition methods. Comput. Math. Appl. 29 7 (1996) 103-108
-
(1996)
Comput. Math. Appl.
, vol.29
, Issue.7
, pp. 103-108
-
-
Abbaoui, K.1
Cherruault, Y.2
|