-
1
-
-
0034113992
-
The fractional order governing equations of Lévy motion
-
Benson D., Wheatcraft S., and Meerschaeert M. The fractional order governing equations of Lévy motion. Water Resour. Res. 36 (2000) 1413-1423
-
(2000)
Water Resour. Res.
, vol.36
, pp. 1413-1423
-
-
Benson, D.1
Wheatcraft, S.2
Meerschaeert, M.3
-
2
-
-
0002745423
-
A fractional diffusion eqution to describe Lévy flights
-
Chaves A. A fractional diffusion eqution to describe Lévy flights. Phys. Lett. A 239 (1998) 13-16
-
(1998)
Phys. Lett. A
, vol.239
, pp. 13-16
-
-
Chaves, A.1
-
3
-
-
31244438428
-
A physical interpretation for the fractional derivative in Lévy diffusion
-
Molz F., Fix G., and Lu S. A physical interpretation for the fractional derivative in Lévy diffusion. Appl. Math. Lett. 15 (2002) 907-911
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 907-911
-
-
Molz, F.1
Fix, G.2
Lu, S.3
-
4
-
-
48049090105
-
-
J. Boggs, L. Beard, W. Waldrop, Transport of tritium and four organic compounds during a natural-gradient experiment (MADE-2), Technical Report EPRI TR-101998, Elec. Power Res. Inst., Pleasant Hill, Calif., 1993
-
J. Boggs, L. Beard, W. Waldrop, Transport of tritium and four organic compounds during a natural-gradient experiment (MADE-2), Technical Report EPRI TR-101998, Elec. Power Res. Inst., Pleasant Hill, Calif., 1993
-
-
-
-
5
-
-
0035069924
-
Fractional dispersion, Lévy motion and the made tracer tests
-
Benson D., Schumer R., Meerschaeert M., and Wheatcraft S. Fractional dispersion, Lévy motion and the made tracer tests. Transp. Porous Media 42 (2001) 211-240
-
(2001)
Transp. Porous Media
, vol.42
, pp. 211-240
-
-
Benson, D.1
Schumer, R.2
Meerschaeert, M.3
Wheatcraft, S.4
-
6
-
-
0034032484
-
Application of a fractional advection-dispersion equation
-
Benson D., Wheatcraft S., and Meerschaeert M. Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000) 1403-1412
-
(2000)
Water Resour. Res.
, vol.36
, pp. 1403-1412
-
-
Benson, D.1
Wheatcraft, S.2
Meerschaeert, M.3
-
7
-
-
0035679868
-
Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models
-
Carreras B., Lynch V., and Zaslavsky G. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasmas 8 12 (2001) 5096-5103
-
(2001)
Phys. Plasmas
, vol.8
, Issue.12
, pp. 5096-5103
-
-
Carreras, B.1
Lynch, V.2
Zaslavsky, G.3
-
8
-
-
0001554548
-
Self-similar transport in incomplete chaos
-
Zaslavsky G., Stevens D., and Weitzner H. Self-similar transport in incomplete chaos. Phys. Rev. E 48 3 (1993) 1683-1694
-
(1993)
Phys. Rev. E
, vol.48
, Issue.3
, pp. 1683-1694
-
-
Zaslavsky, G.1
Stevens, D.2
Weitzner, H.3
-
10
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
Meerschaert M., and Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172 (2004) 65-77
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.1
Tadjeran, C.2
-
11
-
-
42649109055
-
Numerical approximation of a time dependent, non-linear, fractional order diffusion equation
-
Ervin V., Heuer N., and Roop J. Numerical approximation of a time dependent, non-linear, fractional order diffusion equation. SIAM J. Numer. Anal. 45 (2005) 572-591
-
(2005)
SIAM J. Numer. Anal.
, vol.45
, pp. 572-591
-
-
Ervin, V.1
Heuer, N.2
Roop, J.3
-
12
-
-
33646262074
-
Variational formulation for the stationary fractional advection dispersion equation
-
Ervin V., and Roop J. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations 22 (2006) 558-576
-
(2006)
Numer. Methods Partial Differential Equations
, vol.22
, pp. 558-576
-
-
Ervin, V.1
Roop, J.2
-
14
-
-
14644446063
-
Least squares finite element solution of a fractional order two-point boundary value problem
-
Fix G., and Roop J. Least squares finite element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48 (2004) 1017-1033
-
(2004)
Comput. Math. Appl.
, vol.48
, pp. 1017-1033
-
-
Fix, G.1
Roop, J.2
-
15
-
-
48049089673
-
-
J. Roop, Variational solution of the fractional advection dispersion equation, Ph.D. Thesis, Clemson University, 2004
-
J. Roop, Variational solution of the fractional advection dispersion equation, Ph.D. Thesis, Clemson University, 2004
-
-
-
-
18
-
-
0031327621
-
Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems
-
John V., Maubach J., and Tobiska L. Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math. 78 (1997) 165-188
-
(1997)
Numer. Math.
, vol.78
, pp. 165-188
-
-
John, V.1
Maubach, J.2
Tobiska, L.3
-
20
-
-
84967633331
-
The mathematical structure of the boundary layer problem
-
von Mises R., and Friedrichs K. (Eds), Brown Univ., Providence, RI Reprinted by Springer-Verlag, New York, 1971
-
Friedrichs K. The mathematical structure of the boundary layer problem. In: von Mises R., and Friedrichs K. (Eds). Fluid Dynamics (1941), Brown Univ., Providence, RI 171-174 Reprinted by Springer-Verlag, New York, 1971
-
(1941)
Fluid Dynamics
, pp. 171-174
-
-
Friedrichs, K.1
-
21
-
-
0036568418
-
Numerical approximation of one-dimensional stationary diffusion equations with boundary layers
-
Cheng W., and Temam R. Numerical approximation of one-dimensional stationary diffusion equations with boundary layers. Comput. & Fluids 31 (2002) 453-466
-
(2002)
Comput. & Fluids
, vol.31
, pp. 453-466
-
-
Cheng, W.1
Temam, R.2
-
22
-
-
0000739785
-
New approximation algorithms for a class of partial differential equations displaying boundary layer behavior
-
Cheng W., Temam R., and Wang X. New approximation algorithms for a class of partial differential equations displaying boundary layer behavior. Methods Appl. Anal. 7 (2000) 363-390
-
(2000)
Methods Appl. Anal.
, vol.7
, pp. 363-390
-
-
Cheng, W.1
Temam, R.2
Wang, X.3
-
23
-
-
18744411796
-
Numerical approximation of two-dimensional convection-diffusion equations with boundary layers
-
Jung C. Numerical approximation of two-dimensional convection-diffusion equations with boundary layers. Numer. Methods Partial Differential Equations 21 (2005) 623-648
-
(2005)
Numer. Methods Partial Differential Equations
, vol.21
, pp. 623-648
-
-
Jung, C.1
-
28
-
-
48049116733
-
-
I. Podlubny, M. Kacenak, Matlab implementation of the Mittag-Leffler function. Available online: http://www.mathworks.com, 2005
-
I. Podlubny, M. Kacenak, Matlab implementation of the Mittag-Leffler function. Available online: http://www.mathworks.com, 2005
-
-
-
|