-
1
-
-
55249090171
-
Can one see a competition between subdiffusion and Lévy flights? A case of geometric-stable noise
-
Burnecki, K., Janczura, J., Magdziarz, M., Weron, A.: Can one see a competition between subdiffusion and Lévy flights? A case of geometric-stable noise. Acta Phys. Pol., B 39, 1043-1054 (2008).
-
(2008)
Acta Phys. Pol., B
, vol.39
, pp. 1043-1054
-
-
Burnecki, K.1
Janczura, J.2
Magdziarz, M.3
Weron, A.4
-
2
-
-
77950690888
-
Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
-
Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1-21 (2010).
-
(2010)
Numer. Algorithms
, vol.54
, pp. 1-21
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
3
-
-
34548163554
-
Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator
-
Ciesielski, M., Leszczynski, J.: Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator. J. Theor. Appl. Mech. 44, 393-403 (2006).
-
(2006)
J. Theor. Appl. Mech.
, vol.44
, pp. 393-403
-
-
Ciesielski, M.1
Leszczynski, J.2
-
4
-
-
33748295799
-
Fractional diffusion models of nonlocal transport
-
Del-Castillo-Negrete, D.: Fractional diffusion models of nonlocal transport. Phys. Plasmas 13, 082308 (2006).
-
(2006)
Phys. Plasmas
, vol.13
, pp. 082308
-
-
Del-Castillo-Negrete, D.1
-
5
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractioal differential equations
-
Diethelm, K., Ford, N. J., Freed, A. D.: A predictor-corrector approach for the numerical solution of fractioal differential equations. Nonlinear Dyn. 29, 3-22 (2002).
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
6
-
-
4043121080
-
Detailed error analysis for a fractional adams method
-
Diethelm, K., Ford, N. J., Freed, A. D.: Detailed error analysis for a fractional adams method. Numer. Algorithms 36, 31-52 (2004).
-
(2004)
Numer. Algorithms
, vol.36
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
7
-
-
0043044718
-
Numerical solution of fractional order differential equations by extrapolation
-
Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231-253 (1997).
-
(1997)
Numer. Algorithms
, vol.16
, pp. 231-253
-
-
Diethelm, K.1
Walz, G.2
-
8
-
-
34249335010
-
Short memory principle and a predictor-corrector approach for fractional differential equations
-
Deng, W.: Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 174-188 (2007).
-
(2007)
J. Comput. Appl. Math.
, vol.206
, pp. 174-188
-
-
Deng, W.1
-
9
-
-
0035625795
-
The numerical solution of fractional differential equations: Speed versus accuracy
-
Ford, N. J., Simpson, A. C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 336-346 (2001).
-
(2001)
Numer. Algorithms
, vol.26
, pp. 336-346
-
-
Ford, N.J.1
Simpson, A.C.2
-
10
-
-
40549140431
-
Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation
-
Fulger, D., Scalas, E., Germano, G.: Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev., E 77, 021122 (2008).
-
(2008)
Phys. Rev., E
, vol.77
, pp. 021122
-
-
Fulger, D.1
Scalas, E.2
Germano, G.3
-
11
-
-
0345725412
-
Approximation of Lévy-Feller diffusion by random walk
-
Gorenflo, R., Mainardi, F.: Approximation of Lévy-Feller diffusion by random walk. J. Anal. Appl. (ZAA) 18, 231-246 (1999).
-
(1999)
J. Anal. Appl. (ZAA)
, vol.18
, pp. 231-246
-
-
Gorenflo, R.1
Mainardi, F.2
-
12
-
-
0141996364
-
Fully discrete random walks for space-time fractional diffusion equations
-
Gorenflo, R., Vivoli, A.: Fully discrete random walks for space-time fractional diffusion equations. Signal Process. 83, 2411-2420 (2003).
-
(2003)
Signal Process.
, vol.83
, pp. 2411-2420
-
-
Gorenflo, R.1
Vivoli, A.2
-
13
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533-1552 (2007).
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
14
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209-219 (2004).
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
15
-
-
33751548431
-
Numerical simulation for solute transport in fractal porous media
-
Liu, F., Anh, V., Turner, I., Zhuang, P.: Numerical simulation for solute transport in fractal porous media. Australian and New Zealand Industrial and Applied Mathematics Journal 45(E), 461-473 (2004).
-
(2004)
Australian and New Zealand Industrial and Applied Mathematics Journal
, vol.45
, Issue.E
, pp. 461-473
-
-
Liu, F.1
Anh, V.2
Turner, I.3
Zhuang, P.4
-
16
-
-
34547673244
-
Stability and convergence of difference methods for the space-time fractional advection-diffusion equation
-
Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12-20 (2007).
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
17
-
-
33846621507
-
Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation
-
Magdziarz, M., Weron, A.: Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. Phys. Rev., E 75, 016708 (2007).
-
(2007)
Phys. Rev., E
, vol.75
, pp. 016708
-
-
Magdziarz, M.1
Weron, A.2
-
18
-
-
34547327313
-
Competition between subdiffusion and Lévy fights: A Monte Carlo approach
-
Magdziarz, M., Weron, A.: Competition between subdiffusion and Lévy fights: a Monte Carlo approach. Phys. Rev., E 75, 056702 (2007).
-
(2007)
Phys. Rev., E
, vol.75
, pp. 056702
-
-
Magdziarz, M.1
Weron, A.2
-
19
-
-
25444463578
-
Finite difference methods for two dimensional fractional dispersion equation
-
Meerschaert, M. M., Scheffler, H., Tadjeran, C.: Finite difference methods for two dimensional fractional dispersion equation. J. Comput. Phys. 211, 249-261 (2006).
-
(2006)
J. Comput. Phys.
, vol.211
, pp. 249-261
-
-
Meerschaert, M.M.1
Scheffler, H.2
Tadjeran, C.3
-
20
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
Meerschaert, M. M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65-77 (2004).
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
21
-
-
28044468843
-
Finite difference approximations for two-sided space-fractional partial differential equations
-
Meerschaert, M. M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80-90 (2006).
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 80-90
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
22
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77 (2000).
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
24
-
-
33646191893
-
Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
-
Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 193, 243-268 (2006).
-
(2006)
J. Comput. Appl. Math.
, vol.193
, pp. 243-268
-
-
Roop, J.P.1
-
26
-
-
48749097743
-
Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order
-
Shen, S., Liu, F., Anh, V.: Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 28, 147-164 (2008).
-
(2008)
J. Appl. Math. Comput.
, vol.28
, pp. 147-164
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
27
-
-
33845628108
-
A second-order accurate numerical method for the two-dimensional fractional diffusion equation
-
Tadjeran, C., Meerschaert, M. M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813-823 (2007).
-
(2007)
J. Comput. Phys.
, vol.220
, pp. 813-823
-
-
Tadjeran, C.1
Meerschaert, M.M.2
-
28
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran, C., Meerschaert, M. M., Scheffler, H. P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205-213 (2006).
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
29
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
Zaslavsky, G. M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461-580 (2002).
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
30
-
-
84867978055
-
Implicit difference approximation for the time fractional diffusion equation
-
Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87-99 (2006).
-
(2006)
J. Appl. Math. Comput.
, vol.22
, pp. 87-99
-
-
Zhuang, P.1
Liu, F.2
|