-
1
-
-
0003797958
-
Fractional differential equations
-
Academic Press Inc., San Diego, CA
-
Podlubny I. Fractional differential equations. Mathematics in Science and Engineering 1999, vol. 198. Academic Press Inc., San Diego, CA.
-
(1999)
Mathematics in Science and Engineering
, vol.198
-
-
Podlubny, I.1
-
2
-
-
77954143774
-
Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral approximation
-
To appear, doi:10.4208/cicp.020709.221209a
-
X. Li, C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral approximation, Commun. Comput. Phys. To appear, doi:10.4208/cicp.020709.221209a.
-
Commun. Comput. Phys.
-
-
Li, X.1
Xu, C.2
-
3
-
-
0036650850
-
Time fractional diffusion: a discrete random walk approach
-
Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 2002, 29(1-4):129-143.
-
(2002)
Nonlinear Dyn.
, vol.29
, Issue.1-4
, pp. 129-143
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Paradisi, P.4
-
4
-
-
34047155650
-
Continuous-time random walk and parametric subordination in fractional diffusion
-
Gorenflo R., Mainardi F., Vivoli A. Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 2007, 34(1):87-103.
-
(2007)
Chaos Solitons Fractals
, vol.34
, Issue.1
, pp. 87-103
-
-
Gorenflo, R.1
Mainardi, F.2
Vivoli, A.3
-
5
-
-
0033884660
-
Boundary value problems for fractional diffusion equations
-
Metzler R., Klafter J. Boundary value problems for fractional diffusion equations. Phys. A 2000, 278(1-2):107-125.
-
(2000)
Phys. A
, vol.278
, Issue.1-2
, pp. 107-125
-
-
Metzler, R.1
Klafter, J.2
-
6
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339(1):77.
-
(2000)
Phys. Rep.
, vol.339
, Issue.1
, pp. 77
-
-
Metzler, R.1
Klafter, J.2
-
7
-
-
17644372361
-
An approximate solution for a fractional diffusion-wave equation using the decomposition method
-
Al-Khaled K., Momani S. An approximate solution for a fractional diffusion-wave equation using the decomposition method. Appl. Math. Comput. 2005, 165(2):473-483.
-
(2005)
Appl. Math. Comput.
, vol.165
, Issue.2
, pp. 473-483
-
-
Al-Khaled, K.1
Momani, S.2
-
8
-
-
33646398146
-
Convolution quadrature time discretization of fractional diffusion-wave equations
-
Cuesta E., Lubich C., Palencia C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 2006, 75(254):673-696.
-
(2006)
Math. Comp.
, vol.75
, Issue.254
, pp. 673-696
-
-
Cuesta, E.1
Lubich, C.2
Palencia, C.3
-
9
-
-
4544380424
-
A numerical method for an integro-differential equation with memory in Banach spaces: qualitative properties
-
Cuesta E., Palencia C. A numerical method for an integro-differential equation with memory in Banach spaces: qualitative properties. SIAM J. Numer. Anal. 2003, 41(4):1232-1241.
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, Issue.4
, pp. 1232-1241
-
-
Cuesta, E.1
Palencia, C.2
-
10
-
-
36149001762
-
Numerical algorithm for the time-fractional Fokker-Planck equation
-
Deng W. Numerical algorithm for the time-fractional Fokker-Planck equation. J. Comput. Phys. 2007, 227(2):1510-1522.
-
(2007)
J. Comput. Phys.
, vol.227
, Issue.2
, pp. 1510-1522
-
-
Deng, W.1
-
11
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205(2):719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, Issue.2
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
12
-
-
33749512364
-
Approximate solutions for boundary-value problems of time-fractional wave equation
-
Odibat Z., Momani S. Approximate solutions for boundary-value problems of time-fractional wave equation. Appl. Math. Comput. 2006, 181(1):767-774.
-
(2006)
Appl. Math. Comput.
, vol.181
, Issue.1
, pp. 767-774
-
-
Odibat, Z.1
Momani, S.2
-
13
-
-
34548650141
-
Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives
-
Odibat Z., Momani S. Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives. Phys. Lett. A 2007, 369:349-358.
-
(2007)
Phys. Lett. A
, vol.369
, pp. 349-358
-
-
Odibat, Z.1
Momani, S.2
-
14
-
-
34548384362
-
Numerical methods for nonlinear partial differential equations of fractional-order
-
Odibat Z., Momani S. Numerical methods for nonlinear partial differential equations of fractional-order. Appl. Math. Model. 2008, 32(1):28-39.
-
(2008)
Appl. Math. Model.
, vol.32
, Issue.1
, pp. 28-39
-
-
Odibat, Z.1
Momani, S.2
-
15
-
-
84867934896
-
Detailed analysis of a conservative difference approximation for the time-fractional diffusion equation
-
Shen S., Liu F., Anh V., Turner I. Detailed analysis of a conservative difference approximation for the time-fractional diffusion equation. J. Appl. Math. Comput. 2006, 22(3):1-19.
-
(2006)
J. Appl. Math. Comput.
, vol.22
, Issue.3
, pp. 1-19
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
-
16
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56(2):193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, Issue.2
, pp. 193-209
-
-
Sun, Z.1
Wu, X.2
-
17
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216(1):264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, Issue.1
, pp. 264-274
-
-
Yuste, S.B.1
-
18
-
-
34548553258
-
Implicit difference approximation for the two-dimensional space-time fractional diffusion equation
-
Zhuang P., Liu F. Implicit difference approximation for the two-dimensional space-time fractional diffusion equation. J. Appl. Math. Comput. 2007, 25(1-2):269-282.
-
(2007)
J. Appl. Math. Comput.
, vol.25
, Issue.1-2
, pp. 269-282
-
-
Zhuang, P.1
Liu, F.2
-
19
-
-
10644238068
-
Algorithms for the fractional calculus: a selection of numerical methods
-
Diethelm K., Ford N.J., Freed A.D., Luchko Y. Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 2005, 194(6-8):743-773.
-
(2005)
Comput. Methods Appl. Mech. Eng.
, vol.194
, Issue.6-8
, pp. 743-773
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Luchko, Y.4
-
20
-
-
13644261578
-
Numerical inversion of 2D Laplace transforms applied to fractional diffusion equations
-
Valkó P.P., Abate J. Numerical inversion of 2D Laplace transforms applied to fractional diffusion equations. Appl. Numer. Math. 2005, 53(1):73-88.
-
(2005)
Appl. Numer. Math.
, vol.53
, Issue.1
, pp. 73-88
-
-
Valkó, P.P.1
Abate, J.2
-
21
-
-
33746901224
-
An efficient algorithm for the evaluation of convolution integrals
-
Diethelm K., Freed A.D. An efficient algorithm for the evaluation of convolution integrals. Comput. Math. Appl. 2006, 51(1):51-72.
-
(2006)
Comput. Math. Appl.
, vol.51
, Issue.1
, pp. 51-72
-
-
Diethelm, K.1
Freed, A.D.2
-
22
-
-
46049100549
-
A fractional-order implicit difference approximation for the space-time fractional diffusion equation
-
Liu F., Zhuang P., Anh V., Turner I. A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 2005, 47:C48-C68.
-
(2005)
ANZIAM J.
, vol.47
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
-
23
-
-
0035625795
-
The numerical solution of fractional differential equations: speed versus accuracy
-
Ford N.J., Simpson A.C. The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 2001, 26(4):333-346.
-
(2001)
Numer. Algorithms
, vol.26
, Issue.4
, pp. 333-346
-
-
Ford, N.J.1
Simpson, A.C.2
-
24
-
-
0001581262
-
Boundary layer resolving pseudospectral methods for singular perturbation problems
-
Tang T., Trummer M.R. Boundary layer resolving pseudospectral methods for singular perturbation problems. SIAM J. Sci. Comput. 1996, 17(2):430-438.
-
(1996)
SIAM J. Sci. Comput.
, vol.17
, Issue.2
, pp. 430-438
-
-
Tang, T.1
Trummer, M.R.2
-
25
-
-
14644407531
-
Multiquadratic collocation method with integral formulation for boundary layer problems
-
Ling L., Trummer M.R. Multiquadratic collocation method with integral formulation for boundary layer problems. Comput. Math. Appl. 2004, 48(5-6):927-941.
-
(2004)
Comput. Math. Appl.
, vol.48
, Issue.5-6
, pp. 927-941
-
-
Ling, L.1
Trummer, M.R.2
-
26
-
-
28244500579
-
Adaptive multiquadric collocation for boundary layer problems
-
Ling L., Trummer M.R. Adaptive multiquadric collocation for boundary layer problems. J. Comp. Appl. Math. 2006, 188(2):256-282.
-
(2006)
J. Comp. Appl. Math.
, vol.188
, Issue.2
, pp. 256-282
-
-
Ling, L.1
Trummer, M.R.2
-
27
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional-order
-
Diethelm K. An algorithm for the numerical solution of differential equations of fractional-order. Elec. Transact. Numer. Anal. 1997, 5:1-6.
-
(1997)
Elec. Transact. Numer. Anal.
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
28
-
-
0342489542
-
Collocation methods for Volterra integral and related functional differential equations
-
Cambridge University Press, Cambridge
-
Brunner H. Collocation methods for Volterra integral and related functional differential equations. Cambridge Monographs on Applied and Computational Mathematics 2004, vol. 15. Cambridge University Press, Cambridge.
-
(2004)
Cambridge Monographs on Applied and Computational Mathematics
, vol.15
-
-
Brunner, H.1
-
29
-
-
0035382421
-
Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels
-
Brunner H., Pedas A., Vainikko G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 2001, 39(3):957-982.
-
(2001)
SIAM J. Numer. Anal.
, vol.39
, Issue.3
, pp. 957-982
-
-
Brunner, H.1
Pedas, A.2
Vainikko, G.3
-
30
-
-
64049099076
-
An improved subspace selection algorithm for meshless collocation methods
-
Ling L., Schaback R. An improved subspace selection algorithm for meshless collocation methods. Int. J. Numer. Methods Eng. 2009, 80(13):1623-1639.
-
(2009)
Int. J. Numer. Methods Eng.
, vol.80
, Issue.13
, pp. 1623-1639
-
-
Ling, L.1
Schaback, R.2
-
32
-
-
55349130353
-
Stable and convergent unsymmetric meshless collocation methods
-
Ling L., Schaback R. Stable and convergent unsymmetric meshless collocation methods. SIAM J. Numer. Anal. 2008, 46(3):1097-1115.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, Issue.3
, pp. 1097-1115
-
-
Ling, L.1
Schaback, R.2
-
33
-
-
71949128335
-
On convergence of a least-squares Kansa's method for the modified Helmholtz equations
-
Kwok T.O., Ling L. On convergence of a least-squares Kansa's method for the modified Helmholtz equations. Adv. Appl. Math. Mech. 2009, 1(3):367-382.
-
(2009)
Adv. Appl. Math. Mech.
, vol.1
, Issue.3
, pp. 367-382
-
-
Kwok, T.O.1
Ling, L.2
-
34
-
-
63049098483
-
On convergent numerical algorithms for unsymmetric collocation
-
Lee C.-F., Ling L., Schaback R. On convergent numerical algorithms for unsymmetric collocation. Adv. Comput. Math. 2009, 30(4):339-354.
-
(2009)
Adv. Comput. Math.
, vol.30
, Issue.4
, pp. 339-354
-
-
Lee, C.-F.1
Ling, L.2
Schaback, R.3
-
35
-
-
76449091249
-
Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation
-
Luchko Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 2010, 59(5):1766-1772.
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1766-1772
-
-
Luchko, Y.1
-
36
-
-
85190075335
-
-
Initial value/boundary-value problems for fractional diffusion-wave equations and applications to some inverse problems, (preprint).
-
K. Sakamoto, M. Yamamoto, Initial value/boundary-value problems for fractional diffusion-wave equations and applications to some inverse problems, (preprint).
-
-
-
Sakamoto, K.1
Yamamoto, M.2
-
37
-
-
55349118252
-
Numerical results for the generalized Mittag-Leffler function
-
Seybold H.J., Hilfer R. Numerical results for the generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 2005, 8(2):127-140.
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, Issue.2
, pp. 127-140
-
-
Seybold, H.J.1
Hilfer, R.2
|