메뉴 건너뛰기




Volumn 7, Issue 7, 1999, Pages 865-879

Wavelets and non-linear principal components analysis for process monitoring

Author keywords

Chemical industry; Fault detection; Multivariate quality control; Neural networks; Smoothing filters

Indexed keywords

ALGORITHMS; CHEMICAL INDUSTRY; DRYERS (EQUIPMENT); MULTIVARIABLE CONTROL SYSTEMS; NEURAL NETWORKS; NONLINEAR CONTROL SYSTEMS; QUALITY CONTROL; WAVELET TRANSFORMS;

EID: 0032853906     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0967-0661(99)00039-8     Document Type: Article
Times cited : (76)

References (29)
  • 2
    • 0001245944 scopus 로고
    • An alternative method of cross-validation for the smoothing of density estimates
    • Bowman A.W. An alternative method of cross-validation for the smoothing of density estimates. Biometrika. 71:1984;353-360.
    • (1984) Biometrika , vol.71 , pp. 353-360
    • Bowman, A.W.1
  • 4
    • 0043015539 scopus 로고    scopus 로고
    • Non-linear principal component analysis based on principal curve and neural networks
    • Dong D., MacAvoy T.J. Non-linear principal component analysis based on principal curve and neural networks. Computers Chemical Engineering. 20(1):1996;65-78.
    • (1996) Computers Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    MacAvoy, T.J.2
  • 7
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho D.L., Johnstone I.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika. 81(3):1994;425-455.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 9
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R., Qin S.J., Edgar T.F., McAvoy T.J. Identification of faulty sensors using principal component analysis. A.I.Ch.E. Journal. 42(10):1996;2797-2812.
    • (1996) A.I.Ch.E. Journal , vol.42 , Issue.10 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 10
    • 0030327217 scopus 로고    scopus 로고
    • Performance of wavelet methods for functions with many discontinuities
    • Hall P., McKay I., Turlach B.A. Performance of wavelet methods for functions with many discontinuities. Annals of Statistics. 24(6):1996;2462-2476.
    • (1996) Annals of Statistics , vol.24 , Issue.6 , pp. 2462-2476
    • Hall, P.1    McKay, I.2    Turlach, B.A.3
  • 11
    • 0000761958 scopus 로고    scopus 로고
    • On the choice of smoothing parameter, threshold and truncation in non-parametric regression by non-linear wavelet methods
    • Hall P., Patil P. On the choice of smoothing parameter, threshold and truncation in non-parametric regression by non-linear wavelet methods. Journal of the Royal Statistical Society Series B-Methodological. 58(2):1996;361-377.
    • (1996) Journal of the Royal Statistical Society Series B-Methodological , vol.58 , Issue.2 , pp. 361-377
    • Hall, P.1    Patil, P.2
  • 13
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal components analysis
    • Jackson J.E., Mudholkar G.S. Control procedures for residuals associated with principal components analysis. Technometrics. 21:1979;341-349.
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 14
    • 0000588327 scopus 로고    scopus 로고
    • Non-linear principal components analysis for process fault detection
    • Jia F., Martin E.B., Morris A.J. Non-linear principal components analysis for process fault detection. Computers Chemical Engineering. 22(SS):1998;S851-S854.
    • (1998) Computers Chemical Engineering , vol.22 , Issue.SS , pp. 851-S854
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 18
    • 0026113980 scopus 로고
    • Non-linear principal component analysis using autoassociative neural networks
    • Kramer M.A. Non-linear principal component analysis using autoassociative neural networks. A.I.Ch.E. Journal. 37(2):1991;233-243.
    • (1991) A.I.Ch.E. Journal , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 19
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 11(7):1989;674-693.
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 20
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E.B., Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control. 6(6):1996;349-358.
    • (1996) Journal of Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 21
    • 0031646493 scopus 로고    scopus 로고
    • Limitations of non-linear PCA as performed with generic neural networks
    • Malthouse E.C. Limitations of non-linear PCA as performed with generic neural networks. IEEE Transactions on Neural Networks. 9(1):1998;165-173.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.1 , pp. 165-173
    • Malthouse, E.C.1
  • 22
    • 0003198394 scopus 로고
    • Contribution plots: The missing link in multivariate quality control
    • ASQC, Rochester, NY.
    • Miller, P., Swanson R.E., & Heckler, C.F. (1993). Contribution plots: The missing link in multivariate quality control. 37th Annual Fall Conference. ASQC, Rochester, NY.
    • (1993) 37th Annual Fall Conference
    • Miller, P.1    Swanson, R.E.2    Heckler, C.F.3
  • 26
    • 0030908540 scopus 로고    scopus 로고
    • On-line fault diagnosis for optimal rice alpha-amylase production process of a temperature-sensitive mutant of Saccharomyces cerevisiae by an autoassociative neural network
    • Shimizu H., Yasuoka K., Uchiyama K., Shioya S. On-line fault diagnosis for optimal rice alpha-amylase production process of a temperature-sensitive mutant of Saccharomyces cerevisiae by an autoassociative neural network. Journal of Fermentation and Bioengineering. 83(5):1997;435-442.
    • (1997) Journal of Fermentation and Bioengineering , vol.83 , Issue.5 , pp. 435-442
    • Shimizu, H.1    Yasuoka, K.2    Uchiyama, K.3    Shioya, S.4
  • 27
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimising neural network inputs
    • Tan S., Mavrovouniotis M.L. Reducing data dimensionality through optimising neural network inputs. A.I.Ch.E. Journal. 41(6):1995;1471-1480.
    • (1995) A.I.Ch.E. Journal , vol.41 , Issue.6 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.L.2
  • 28
    • 0029342346 scopus 로고
    • Detection of gross errors in data reconciliation by principal component analysis
    • Tong H., Crowe C.M. Detection of gross errors in data reconciliation by principal component analysis. A.I.Ch.E. Journal. 41(7):1995;1712-1722.
    • (1995) A.I.Ch.E. Journal , vol.41 , Issue.7 , pp. 1712-1722
    • Tong, H.1    Crowe, C.M.2
  • 29
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics. 20:1978;397-405.
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.