-
1
-
-
77949579365
-
Mechanisms of chromosomal instability
-
Thompson S.L., et al. Mechanisms of chromosomal instability. Curr. Biol. 2010, 20:R285-R295.
-
(2010)
Curr. Biol.
, vol.20
-
-
Thompson, S.L.1
-
2
-
-
77957237291
-
Identification of aneuploidy-tolerating mutations
-
Torres E.M., et al. Identification of aneuploidy-tolerating mutations. Cell 2010, 143:71-83.
-
(2010)
Cell
, vol.143
, pp. 71-83
-
-
Torres, E.M.1
-
3
-
-
55349112533
-
Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells
-
Williams B.R., et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 2008, 322:703-709.
-
(2008)
Science
, vol.322
, pp. 703-709
-
-
Williams, B.R.1
-
4
-
-
78149423336
-
Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast
-
Pavelka N., et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 2010, 468:321-325.
-
(2010)
Nature
, vol.468
, pp. 321-325
-
-
Pavelka, N.1
-
5
-
-
56349088536
-
Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor
-
Rancati G., et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 2008, 135:879-893.
-
(2008)
Cell
, vol.135
, pp. 879-893
-
-
Rancati, G.1
-
6
-
-
33846065784
-
Aneuploidy acts both oncogenically and as a tumor suppressor
-
Weaver B.A., et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007, 11:25-36.
-
(2007)
Cancer Cell
, vol.11
, pp. 25-36
-
-
Weaver, B.A.1
-
7
-
-
33746506280
-
Aneuploidy and isochromosome formation in drug-resistant Candida albicans
-
Selmecki A., et al. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006, 313:367-370.
-
(2006)
Science
, vol.313
, pp. 367-370
-
-
Selmecki, A.1
-
8
-
-
80053364894
-
Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations
-
Janssen A., et al. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011, 333:1895-1898.
-
(2011)
Science
, vol.333
, pp. 1895-1898
-
-
Janssen, A.1
-
9
-
-
80051871652
-
Aneuploidy drives genomic instability in yeast
-
Sheltzer J.M., et al. Aneuploidy drives genomic instability in yeast. Science 2011, 333:1026-1030.
-
(2011)
Science
, vol.333
, pp. 1026-1030
-
-
Sheltzer, J.M.1
-
10
-
-
0038079839
-
Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer
-
Tomonaga T., et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 2003, 63:3511-3516.
-
(2003)
Cancer Res.
, vol.63
, pp. 3511-3516
-
-
Tomonaga, T.1
-
11
-
-
56549108407
-
Epigenetic regulation of centromeric chromatin: old dogs, new tricks?
-
Allshire R.C., Karpen G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks?. Nat. Rev. Genet. 2008, 9:923-937.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 923-937
-
-
Allshire, R.C.1
Karpen, G.H.2
-
12
-
-
33744786043
-
Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
-
Meraldi P., et al. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 2006, 7:R23.
-
(2006)
Genome Biol.
, vol.7
-
-
Meraldi, P.1
-
13
-
-
79951709224
-
Epigenetic centromere propagation and the nature of CENP-a nucleosomes
-
Black B.E., Cleveland D.W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 2011, 144:471-479.
-
(2011)
Cell
, vol.144
, pp. 471-479
-
-
Black, B.E.1
Cleveland, D.W.2
-
14
-
-
33947239252
-
Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin
-
Maddox P.S., et al. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 2007, 176:757-763.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 757-763
-
-
Maddox, P.S.1
-
15
-
-
77956285927
-
Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences
-
Shang W.H., et al. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 2010, 20:1219-1228.
-
(2010)
Genome Res.
, vol.20
, pp. 1219-1228
-
-
Shang, W.H.1
-
16
-
-
22244451706
-
Stable barley chromosomes without centromeric repeats
-
Nasuda S., et al. Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:9842-9847.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 9842-9847
-
-
Nasuda, S.1
-
17
-
-
33846199534
-
Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain
-
Black B.E., et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 2007, 25:309-322.
-
(2007)
Mol. Cell
, vol.25
, pp. 309-322
-
-
Black, B.E.1
-
18
-
-
79958244227
-
Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells
-
Sullivan L.L., et al. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res. 2011, 19:457-470.
-
(2011)
Chromosome Res.
, vol.19
, pp. 457-470
-
-
Sullivan, L.L.1
-
19
-
-
0842289255
-
Sequencing of a rice centromere uncovers active genes
-
Nagaki K., et al. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 2004, 36:138-145.
-
(2004)
Nat. Genet.
, vol.36
, pp. 138-145
-
-
Nagaki, K.1
-
20
-
-
34247360439
-
Evolutionary formation of new centromeres in macaque
-
Ventura M., et al. Evolutionary formation of new centromeres in macaque. Science 2007, 316:243-246.
-
(2007)
Science
, vol.316
, pp. 243-246
-
-
Ventura, M.1
-
21
-
-
78651484455
-
Genome-wide characterization of centromeric satellites from multiple mammalian genomes
-
Alkan C., et al. Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Res. 2011, 21:137-145.
-
(2011)
Genome Res.
, vol.21
, pp. 137-145
-
-
Alkan, C.1
-
22
-
-
3843076217
-
Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique
-
Sanyal K., et al. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:11374-11379.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 11374-11379
-
-
Sanyal, K.1
-
23
-
-
58149374566
-
Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis
-
Padmanabhan S., et al. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19797-19802.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 19797-19802
-
-
Padmanabhan, S.1
-
24
-
-
77950579006
-
Widespread gene conversion in centromere cores
-
Shi J., et al. Widespread gene conversion in centromere cores. PLoS Biol. 2010, 8:e1000327.
-
(2010)
PLoS Biol.
, vol.8
-
-
Shi, J.1
-
25
-
-
73249134322
-
Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability
-
Pertile M.D., et al. Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res. 2009, 19:2202-2213.
-
(2009)
Genome Res.
, vol.19
, pp. 2202-2213
-
-
Pertile, M.D.1
-
26
-
-
57349107993
-
Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers
-
Fishman L., Saunders A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 2008, 322:1559-1562.
-
(2008)
Science
, vol.322
, pp. 1559-1562
-
-
Fishman, L.1
Saunders, A.2
-
27
-
-
44449161646
-
Rapid evolution of yeast centromeres in the absence of drive
-
Bensasson D., et al. Rapid evolution of yeast centromeres in the absence of drive. Genetics 2008, 178:2161-2167.
-
(2008)
Genetics
, vol.178
, pp. 2161-2167
-
-
Bensasson, D.1
-
28
-
-
66049126341
-
Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago
-
Capozzi O., et al. Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. Genome Res. 2009, 19:778-784.
-
(2009)
Genome Res.
, vol.19
, pp. 778-784
-
-
Capozzi, O.1
-
29
-
-
61549093717
-
Evolutionary-new centromeres preferentially emerge within gene deserts
-
Lomiento M., et al. Evolutionary-new centromeres preferentially emerge within gene deserts. Genome Biol. 2008, 9:R173.
-
(2008)
Genome Biol.
, vol.9
-
-
Lomiento, M.1
-
30
-
-
83655167160
-
Centromere repositioning in mammals
-
Rocchi M., et al. Centromere repositioning in mammals. Heredity 2012, 108:59-67.
-
(2012)
Heredity
, vol.108
, pp. 59-67
-
-
Rocchi, M.1
-
31
-
-
70349292204
-
Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation
-
Han Y., et al. Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14937-14941.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 14937-14941
-
-
Han, Y.1
-
32
-
-
40749092486
-
Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution
-
Marshall O.J., et al. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 2008, 82:261-282.
-
(2008)
Am. J. Hum. Genet.
, vol.82
, pp. 261-282
-
-
Marshall, O.J.1
-
33
-
-
0000187034
-
Transmission of a fully functional human neocentromere through three generations
-
Tyler-Smith C., et al. Transmission of a fully functional human neocentromere through three generations. Am. J. Hum. Genet. 1999, 64:1440-1444.
-
(1999)
Am. J. Hum. Genet.
, vol.64
, pp. 1440-1444
-
-
Tyler-Smith, C.1
-
34
-
-
77956138544
-
A case of angioimmunoblastic T-cell non-Hodgkin lymphoma with a neocentric inv dup(1)
-
Blom E., et al. A case of angioimmunoblastic T-cell non-Hodgkin lymphoma with a neocentric inv dup(1). Cancer Genet. Cytogenet. 2010, 202:38-42.
-
(2010)
Cancer Genet. Cytogenet.
, vol.202
, pp. 38-42
-
-
Blom, E.1
-
35
-
-
68049110627
-
A case of childhood acute myeloid leukemia AML (M5) with a neocentric chromosome neo(1)(qter-->q23 approximately 24::q23 approximately 24-->q43-->neo-->q43-->qter) and tetrasomy of chromosomes 8 and 21
-
de Figueiredo A.F., et al. A case of childhood acute myeloid leukemia AML (M5) with a neocentric chromosome neo(1)(qter-->q23 approximately 24::q23 approximately 24-->q43-->neo-->q43-->qter) and tetrasomy of chromosomes 8 and 21. Cancer Genet. Cytogenet. 2009, 193:123-126.
-
(2009)
Cancer Genet. Cytogenet.
, vol.193
, pp. 123-126
-
-
de Figueiredo, A.F.1
-
36
-
-
0033848597
-
Characterization of centromere alterations in liposarcomas
-
Sirvent N., et al. Characterization of centromere alterations in liposarcomas. Genes Chromosomes Cancer 2000, 29:117-129.
-
(2000)
Genes Chromosomes Cancer
, vol.29
, pp. 117-129
-
-
Sirvent, N.1
-
37
-
-
77953480835
-
First case of a neocentromere formation in an otherwise normal chromosome 7
-
Liehr T., et al. First case of a neocentromere formation in an otherwise normal chromosome 7. Cytogenet. Genome Res. 2010, 128:189-191.
-
(2010)
Cytogenet. Genome Res.
, vol.128
, pp. 189-191
-
-
Liehr, T.1
-
38
-
-
82355173336
-
Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres
-
Hasson D., et al. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 2011, 120:621-632.
-
(2011)
Chromosoma
, vol.120
, pp. 621-632
-
-
Hasson, D.1
-
39
-
-
77953417422
-
A paucity of heterochromatin at functional human neocentromeres
-
Alonso A., et al. A paucity of heterochromatin at functional human neocentromeres. Epigenet. Chromatin 2010, 3:6.
-
(2010)
Epigenet. Chromatin
, vol.3
, pp. 6
-
-
Alonso, A.1
-
40
-
-
0142247466
-
Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres
-
Alonso A., et al. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum. Mol. Genet. 2003, 12:2711-2721.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 2711-2721
-
-
Alonso, A.1
-
41
-
-
59249100073
-
LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin
-
Chueh A.C., et al. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet. 2009, 5:e1000354.
-
(2009)
PLoS Genet.
, vol.5
-
-
Chueh, A.C.1
-
42
-
-
77955006537
-
Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors
-
Bassett E.A., et al. Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors. J. Cell Biol. 2010, 190:177-185.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 177-185
-
-
Bassett, E.A.1
-
43
-
-
0034845229
-
The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere
-
Maggert K.A., Karpen G.H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 2001, 158:1615-1628.
-
(2001)
Genetics
, vol.158
, pp. 1615-1628
-
-
Maggert, K.A.1
Karpen, G.H.2
-
44
-
-
79960028125
-
Heterochromatin boundaries are hotspots for de novo kinetochore formation
-
Olszak A.M., et al. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat. Cell Biol. 2011, 13:799-808.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 799-808
-
-
Olszak, A.M.1
-
45
-
-
33644542460
-
Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores
-
Heun P., et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 2006, 10:303-315.
-
(2006)
Dev. Cell
, vol.10
, pp. 303-315
-
-
Heun, P.1
-
46
-
-
50149103619
-
Heterochromatin integrity affects chromosome reorganization after centromere dysfunction
-
Ishii K., et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 2008, 321:1088-1091.
-
(2008)
Science
, vol.321
, pp. 1088-1091
-
-
Ishii, K.1
-
47
-
-
67849119717
-
Identification of a maize neocentromere in an oat-maize addition line
-
Topp C.N., et al. Identification of a maize neocentromere in an oat-maize addition line. Cytogenet. Genome Res. 2009, 124:228-238.
-
(2009)
Cytogenet. Genome Res.
, vol.124
, pp. 228-238
-
-
Topp, C.N.1
-
48
-
-
33748902375
-
The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype
-
Mroczek R.J., et al. The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype. Genetics 2006, 174:145-154.
-
(2006)
Genetics
, vol.174
, pp. 145-154
-
-
Mroczek, R.J.1
-
49
-
-
0029775626
-
Induction of centromeric activity in maize by suppressor of meiotic drive 1
-
Dawe R.K., Cande W.Z. Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:8512-8517.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 8512-8517
-
-
Dawe, R.K.1
Cande, W.Z.2
-
50
-
-
62149122605
-
Neocentromeres form efficiently at multiple possible loci in Candida albicans
-
Ketel C., et al. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet. 2009, 5:e1000400.
-
(2009)
PLoS Genet.
, vol.5
-
-
Ketel, C.1
-
51
-
-
77957337127
-
Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase
-
Koren A., et al. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet. 2010, 6:e1001068.
-
(2010)
PLoS Genet.
, vol.6
-
-
Koren, A.1
-
52
-
-
49949118733
-
Identification of replication origins in prokaryotic genomes
-
Sernova N.V., Gelfand M.S. Identification of replication origins in prokaryotic genomes. Brief. Bioinform. 2008, 9:376-391.
-
(2008)
Brief. Bioinform.
, vol.9
, pp. 376-391
-
-
Sernova, N.V.1
Gelfand, M.S.2
-
53
-
-
33846949409
-
The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension
-
Eckert C.A., et al. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev. 2007, 21:278-291.
-
(2007)
Genes Dev.
, vol.21
, pp. 278-291
-
-
Eckert, C.A.1
-
54
-
-
77957344530
-
Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
-
Stimpson K.M., et al. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet. 2010, 6:e1001061.
-
(2010)
PLoS Genet.
, vol.6
-
-
Stimpson, K.M.1
-
55
-
-
84879602911
-
The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy
-
Article ID 643628
-
MacKinnon R.N., Campbell L.J. The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. Genet. Res. Int. 2011, 2011. 11 p., Article ID 643628. 10.4061/2011/643628.
-
(2011)
Genet. Res. Int.
, vol.2011
, pp. 11
-
-
MacKinnon, R.N.1
Campbell, L.J.2
-
56
-
-
2342452435
-
Human centromere repositioning "in progress"
-
Amor D.J., et al. Human centromere repositioning "in progress" Proc. Natl. Acad. Sci. U.S.A. 2004, 101:6542-6547.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 6542-6547
-
-
Amor, D.J.1
-
57
-
-
70349471296
-
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae
-
Luo M.C., et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15780-15785.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 15780-15785
-
-
Luo, M.C.1
-
58
-
-
82955235604
-
Inactivation of a centromere during the formation of a translocation in maize
-
Gao Z., et al. Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res. 2011, 19:755-761.
-
(2011)
Chromosome Res.
, vol.19
, pp. 755-761
-
-
Gao, Z.1
-
59
-
-
44149083326
-
Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
-
Joglekar A.P., et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 2008, 181:587-594.
-
(2008)
J. Cell Biol.
, vol.181
, pp. 587-594
-
-
Joglekar, A.P.1
-
60
-
-
0029015661
-
Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle
-
Winey M., et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 1995, 129:1601-1615.
-
(1995)
J. Cell Biol.
, vol.129
, pp. 1601-1615
-
-
Winey, M.1
-
61
-
-
69949150953
-
Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast
-
Lacefield S., et al. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat. Cell Biol. 2009, 11:1116-1120.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1116-1120
-
-
Lacefield, S.1
-
62
-
-
69949175138
-
A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast
-
Kiermaier E., et al. A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nat. Cell Biol. 2009, 11:1109-1115.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1109-1115
-
-
Kiermaier, E.1
-
63
-
-
80052849224
-
In vitro centromere and kinetochore assembly on defined chromatin templates
-
Guse A., et al. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 2011, 477:354-358.
-
(2011)
Nature
, vol.477
, pp. 354-358
-
-
Guse, A.1
-
64
-
-
80555125093
-
Drosophila CENH3 is sufficient for centromere formation
-
Mendiburo M.J., et al. Drosophila CENH3 is sufficient for centromere formation. Science 2011, 334:686-690.
-
(2011)
Science
, vol.334
, pp. 686-690
-
-
Mendiburo, M.J.1
-
65
-
-
79955539577
-
Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes
-
Gascoigne K.E., et al. Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes. Cell 2011, 145:410-422.
-
(2011)
Cell
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
-
66
-
-
37449015481
-
CENP-B controls centromere formation depending on the chromatin context
-
Okada T., et al. CENP-B controls centromere formation depending on the chromatin context. Cell 2007, 131:1287-1300.
-
(2007)
Cell
, vol.131
, pp. 1287-1300
-
-
Okada, T.1
-
67
-
-
79960113621
-
Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells
-
Mandegar M.A., et al. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum. Mol. Genet. 2011, 20:2905-2913.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 2905-2913
-
-
Mandegar, M.A.1
-
68
-
-
79961113679
-
HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore
-
Barnhart M.C., et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 2011, 194:229-243.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 229-243
-
-
Barnhart, M.C.1
-
69
-
-
0036200147
-
Conserved organization of centromeric chromatin in flies and humans
-
Blower M.D., et al. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2002, 2:319-330.
-
(2002)
Dev. Cell
, vol.2
, pp. 319-330
-
-
Blower, M.D.1
-
70
-
-
81355161263
-
Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome
-
Lawrimore J., et al. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J. Cell Biol. 2011, 195:573-582.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 573-582
-
-
Lawrimore, J.1
-
71
-
-
81355149553
-
CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast
-
Coffman V.C., et al. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J. Cell Biol. 2011, 195:563-572.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 563-572
-
-
Coffman, V.C.1
-
72
-
-
84859599040
-
'Point' centromeres of Saccharomyces harbor single CenH3 nucleosomes
-
Henikoff S., Henikoff J.G. 'Point' centromeres of Saccharomyces harbor single CenH3 nucleosomes. Genetics 2012, 10.1534/genetics.111.137711.
-
(2012)
Genetics
-
-
Henikoff, S.1
Henikoff, J.G.2
-
73
-
-
70349168454
-
Cse4 is part of an octameric nucleosome in budding yeast
-
Camahort R., et al. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell. 2009, 35:794-805.
-
(2009)
Mol. Cell.
, vol.35
, pp. 794-805
-
-
Camahort, R.1
-
74
-
-
19644379975
-
Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy
-
Tomonaga T., et al. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res. 2005, 65:4683-4689.
-
(2005)
Cancer Res.
, vol.65
, pp. 4683-4689
-
-
Tomonaga, T.1
-
75
-
-
73249144668
-
CENPA overexpression promotes genome instability in pRb-depleted human cells
-
Amato A., et al. CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol. Cancer 2009, 8:119.
-
(2009)
Mol. Cancer
, vol.8
, pp. 119
-
-
Amato, A.1
-
76
-
-
79957461486
-
The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules
-
Burrack L.S., et al. The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules. Curr. Biol. 2011, 21:889-896.
-
(2011)
Curr. Biol.
, vol.21
, pp. 889-896
-
-
Burrack, L.S.1
-
77
-
-
79953045608
-
CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans
-
Roy B., et al. CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans. Mol. Microbiol. 2011, 80:14-32.
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 14-32
-
-
Roy, B.1
-
78
-
-
34547639766
-
Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4
-
Castillo A.G., et al. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLoS Genet. 2007, 3:e121.
-
(2007)
PLoS Genet.
, vol.3
-
-
Castillo, A.G.1
-
79
-
-
33749569228
-
Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells
-
Liu S.T., et al. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 2006, 175:41-53.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 41-53
-
-
Liu, S.T.1
-
80
-
-
78751636707
-
Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore
-
Bergmann J.H., et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 2011, 30:328-340.
-
(2011)
EMBO J.
, vol.30
, pp. 328-340
-
-
Bergmann, J.H.1
-
81
-
-
77957746094
-
Centromere protein A dynamics in human pluripotent stem cell self-renewal, differentiation and DNA damage
-
Ambartsumyan G., et al. Centromere protein A dynamics in human pluripotent stem cell self-renewal, differentiation and DNA damage. Hum. Mol. Genet. 2010, 19:3970-3982.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 3970-3982
-
-
Ambartsumyan, G.1
-
82
-
-
67649939154
-
Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres
-
Kagansky A., et al. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 2009, 324:1716-1719.
-
(2009)
Science
, vol.324
, pp. 1716-1719
-
-
Kagansky, A.1
-
83
-
-
0034762198
-
Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A
-
Van Hooser A.A., et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 2001, 114:3529-3542.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 3529-3542
-
-
Van Hooser, A.A.1
-
84
-
-
34250173486
-
Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes
-
Mizuguchi G., et al. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 2007, 129:1153-1164.
-
(2007)
Cell
, vol.129
, pp. 1153-1164
-
-
Mizuguchi, G.1
-
85
-
-
36049013749
-
Structure, dynamics, and evolution of centromeric nucleosomes
-
Dalal Y., et al. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:15974-15981.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 15974-15981
-
-
Dalal, Y.1
-
86
-
-
79958032907
-
Heterochromatin is required for normal distribution of Neurospora crassa CenH3
-
Smith K.M., et al. Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol. Cell. Biol. 2011, 31:2528-2542.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 2528-2542
-
-
Smith, K.M.1
-
87
-
-
0037318262
-
Sequence analysis of a functional Drosophila centromere
-
Sun X., et al. Sequence analysis of a functional Drosophila centromere. Genome Res. 2003, 13:182-194.
-
(2003)
Genome Res.
, vol.13
, pp. 182-194
-
-
Sun, X.1
-
88
-
-
16344384870
-
Identification of xenopus CENP-A and an associated centromeric DNA repeat
-
Edwards N.S., Murray A.W. Identification of xenopus CENP-A and an associated centromeric DNA repeat. Mol. Biol. Cell 2005, 16:1800-1810.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1800-1810
-
-
Edwards, N.S.1
Murray, A.W.2
-
89
-
-
77953574250
-
Vertebrate kinetochore protein architecture: protein copy number
-
Johnston K., et al. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 2010, 189:937-943.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 937-943
-
-
Johnston, K.1
-
90
-
-
0035172929
-
CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells
-
McEwen B.F., et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 2001, 12:2776-2789.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2776-2789
-
-
McEwen, B.F.1
|