메뉴 건너뛰기




Volumn 28, Issue 5, 2012, Pages 204-212

Flexibility of centromere and kinetochore structures

Author keywords

[No Author keywords available]

Indexed keywords

CENTROMERE PROTEIN A; SATELLITE DNA;

EID: 84860250839     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2012.02.003     Document Type: Review
Times cited : (48)

References (90)
  • 1
    • 77949579365 scopus 로고    scopus 로고
    • Mechanisms of chromosomal instability
    • Thompson S.L., et al. Mechanisms of chromosomal instability. Curr. Biol. 2010, 20:R285-R295.
    • (2010) Curr. Biol. , vol.20
    • Thompson, S.L.1
  • 2
    • 77957237291 scopus 로고    scopus 로고
    • Identification of aneuploidy-tolerating mutations
    • Torres E.M., et al. Identification of aneuploidy-tolerating mutations. Cell 2010, 143:71-83.
    • (2010) Cell , vol.143 , pp. 71-83
    • Torres, E.M.1
  • 3
    • 55349112533 scopus 로고    scopus 로고
    • Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells
    • Williams B.R., et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 2008, 322:703-709.
    • (2008) Science , vol.322 , pp. 703-709
    • Williams, B.R.1
  • 4
    • 78149423336 scopus 로고    scopus 로고
    • Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast
    • Pavelka N., et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 2010, 468:321-325.
    • (2010) Nature , vol.468 , pp. 321-325
    • Pavelka, N.1
  • 5
    • 56349088536 scopus 로고    scopus 로고
    • Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor
    • Rancati G., et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 2008, 135:879-893.
    • (2008) Cell , vol.135 , pp. 879-893
    • Rancati, G.1
  • 6
    • 33846065784 scopus 로고    scopus 로고
    • Aneuploidy acts both oncogenically and as a tumor suppressor
    • Weaver B.A., et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007, 11:25-36.
    • (2007) Cancer Cell , vol.11 , pp. 25-36
    • Weaver, B.A.1
  • 7
    • 33746506280 scopus 로고    scopus 로고
    • Aneuploidy and isochromosome formation in drug-resistant Candida albicans
    • Selmecki A., et al. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006, 313:367-370.
    • (2006) Science , vol.313 , pp. 367-370
    • Selmecki, A.1
  • 8
    • 80053364894 scopus 로고    scopus 로고
    • Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations
    • Janssen A., et al. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011, 333:1895-1898.
    • (2011) Science , vol.333 , pp. 1895-1898
    • Janssen, A.1
  • 9
    • 80051871652 scopus 로고    scopus 로고
    • Aneuploidy drives genomic instability in yeast
    • Sheltzer J.M., et al. Aneuploidy drives genomic instability in yeast. Science 2011, 333:1026-1030.
    • (2011) Science , vol.333 , pp. 1026-1030
    • Sheltzer, J.M.1
  • 10
    • 0038079839 scopus 로고    scopus 로고
    • Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer
    • Tomonaga T., et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 2003, 63:3511-3516.
    • (2003) Cancer Res. , vol.63 , pp. 3511-3516
    • Tomonaga, T.1
  • 11
    • 56549108407 scopus 로고    scopus 로고
    • Epigenetic regulation of centromeric chromatin: old dogs, new tricks?
    • Allshire R.C., Karpen G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks?. Nat. Rev. Genet. 2008, 9:923-937.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 923-937
    • Allshire, R.C.1    Karpen, G.H.2
  • 12
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • Meraldi P., et al. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 2006, 7:R23.
    • (2006) Genome Biol. , vol.7
    • Meraldi, P.1
  • 13
    • 79951709224 scopus 로고    scopus 로고
    • Epigenetic centromere propagation and the nature of CENP-a nucleosomes
    • Black B.E., Cleveland D.W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 2011, 144:471-479.
    • (2011) Cell , vol.144 , pp. 471-479
    • Black, B.E.1    Cleveland, D.W.2
  • 14
    • 33947239252 scopus 로고    scopus 로고
    • Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin
    • Maddox P.S., et al. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 2007, 176:757-763.
    • (2007) J. Cell Biol. , vol.176 , pp. 757-763
    • Maddox, P.S.1
  • 15
    • 77956285927 scopus 로고    scopus 로고
    • Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences
    • Shang W.H., et al. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 2010, 20:1219-1228.
    • (2010) Genome Res. , vol.20 , pp. 1219-1228
    • Shang, W.H.1
  • 16
    • 22244451706 scopus 로고    scopus 로고
    • Stable barley chromosomes without centromeric repeats
    • Nasuda S., et al. Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:9842-9847.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 9842-9847
    • Nasuda, S.1
  • 17
    • 33846199534 scopus 로고    scopus 로고
    • Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain
    • Black B.E., et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 2007, 25:309-322.
    • (2007) Mol. Cell , vol.25 , pp. 309-322
    • Black, B.E.1
  • 18
    • 79958244227 scopus 로고    scopus 로고
    • Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells
    • Sullivan L.L., et al. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res. 2011, 19:457-470.
    • (2011) Chromosome Res. , vol.19 , pp. 457-470
    • Sullivan, L.L.1
  • 19
    • 0842289255 scopus 로고    scopus 로고
    • Sequencing of a rice centromere uncovers active genes
    • Nagaki K., et al. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 2004, 36:138-145.
    • (2004) Nat. Genet. , vol.36 , pp. 138-145
    • Nagaki, K.1
  • 20
    • 34247360439 scopus 로고    scopus 로고
    • Evolutionary formation of new centromeres in macaque
    • Ventura M., et al. Evolutionary formation of new centromeres in macaque. Science 2007, 316:243-246.
    • (2007) Science , vol.316 , pp. 243-246
    • Ventura, M.1
  • 21
    • 78651484455 scopus 로고    scopus 로고
    • Genome-wide characterization of centromeric satellites from multiple mammalian genomes
    • Alkan C., et al. Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Res. 2011, 21:137-145.
    • (2011) Genome Res. , vol.21 , pp. 137-145
    • Alkan, C.1
  • 22
    • 3843076217 scopus 로고    scopus 로고
    • Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique
    • Sanyal K., et al. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:11374-11379.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 11374-11379
    • Sanyal, K.1
  • 23
    • 58149374566 scopus 로고    scopus 로고
    • Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis
    • Padmanabhan S., et al. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19797-19802.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 19797-19802
    • Padmanabhan, S.1
  • 24
    • 77950579006 scopus 로고    scopus 로고
    • Widespread gene conversion in centromere cores
    • Shi J., et al. Widespread gene conversion in centromere cores. PLoS Biol. 2010, 8:e1000327.
    • (2010) PLoS Biol. , vol.8
    • Shi, J.1
  • 25
    • 73249134322 scopus 로고    scopus 로고
    • Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability
    • Pertile M.D., et al. Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res. 2009, 19:2202-2213.
    • (2009) Genome Res. , vol.19 , pp. 2202-2213
    • Pertile, M.D.1
  • 26
    • 57349107993 scopus 로고    scopus 로고
    • Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers
    • Fishman L., Saunders A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 2008, 322:1559-1562.
    • (2008) Science , vol.322 , pp. 1559-1562
    • Fishman, L.1    Saunders, A.2
  • 27
    • 44449161646 scopus 로고    scopus 로고
    • Rapid evolution of yeast centromeres in the absence of drive
    • Bensasson D., et al. Rapid evolution of yeast centromeres in the absence of drive. Genetics 2008, 178:2161-2167.
    • (2008) Genetics , vol.178 , pp. 2161-2167
    • Bensasson, D.1
  • 28
    • 66049126341 scopus 로고    scopus 로고
    • Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago
    • Capozzi O., et al. Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. Genome Res. 2009, 19:778-784.
    • (2009) Genome Res. , vol.19 , pp. 778-784
    • Capozzi, O.1
  • 29
    • 61549093717 scopus 로고    scopus 로고
    • Evolutionary-new centromeres preferentially emerge within gene deserts
    • Lomiento M., et al. Evolutionary-new centromeres preferentially emerge within gene deserts. Genome Biol. 2008, 9:R173.
    • (2008) Genome Biol. , vol.9
    • Lomiento, M.1
  • 30
    • 83655167160 scopus 로고    scopus 로고
    • Centromere repositioning in mammals
    • Rocchi M., et al. Centromere repositioning in mammals. Heredity 2012, 108:59-67.
    • (2012) Heredity , vol.108 , pp. 59-67
    • Rocchi, M.1
  • 31
    • 70349292204 scopus 로고    scopus 로고
    • Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation
    • Han Y., et al. Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14937-14941.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 14937-14941
    • Han, Y.1
  • 32
    • 40749092486 scopus 로고    scopus 로고
    • Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution
    • Marshall O.J., et al. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 2008, 82:261-282.
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 261-282
    • Marshall, O.J.1
  • 33
    • 0000187034 scopus 로고    scopus 로고
    • Transmission of a fully functional human neocentromere through three generations
    • Tyler-Smith C., et al. Transmission of a fully functional human neocentromere through three generations. Am. J. Hum. Genet. 1999, 64:1440-1444.
    • (1999) Am. J. Hum. Genet. , vol.64 , pp. 1440-1444
    • Tyler-Smith, C.1
  • 34
    • 77956138544 scopus 로고    scopus 로고
    • A case of angioimmunoblastic T-cell non-Hodgkin lymphoma with a neocentric inv dup(1)
    • Blom E., et al. A case of angioimmunoblastic T-cell non-Hodgkin lymphoma with a neocentric inv dup(1). Cancer Genet. Cytogenet. 2010, 202:38-42.
    • (2010) Cancer Genet. Cytogenet. , vol.202 , pp. 38-42
    • Blom, E.1
  • 35
    • 68049110627 scopus 로고    scopus 로고
    • A case of childhood acute myeloid leukemia AML (M5) with a neocentric chromosome neo(1)(qter-->q23 approximately 24::q23 approximately 24-->q43-->neo-->q43-->qter) and tetrasomy of chromosomes 8 and 21
    • de Figueiredo A.F., et al. A case of childhood acute myeloid leukemia AML (M5) with a neocentric chromosome neo(1)(qter-->q23 approximately 24::q23 approximately 24-->q43-->neo-->q43-->qter) and tetrasomy of chromosomes 8 and 21. Cancer Genet. Cytogenet. 2009, 193:123-126.
    • (2009) Cancer Genet. Cytogenet. , vol.193 , pp. 123-126
    • de Figueiredo, A.F.1
  • 36
    • 0033848597 scopus 로고    scopus 로고
    • Characterization of centromere alterations in liposarcomas
    • Sirvent N., et al. Characterization of centromere alterations in liposarcomas. Genes Chromosomes Cancer 2000, 29:117-129.
    • (2000) Genes Chromosomes Cancer , vol.29 , pp. 117-129
    • Sirvent, N.1
  • 37
    • 77953480835 scopus 로고    scopus 로고
    • First case of a neocentromere formation in an otherwise normal chromosome 7
    • Liehr T., et al. First case of a neocentromere formation in an otherwise normal chromosome 7. Cytogenet. Genome Res. 2010, 128:189-191.
    • (2010) Cytogenet. Genome Res. , vol.128 , pp. 189-191
    • Liehr, T.1
  • 38
    • 82355173336 scopus 로고    scopus 로고
    • Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres
    • Hasson D., et al. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 2011, 120:621-632.
    • (2011) Chromosoma , vol.120 , pp. 621-632
    • Hasson, D.1
  • 39
    • 77953417422 scopus 로고    scopus 로고
    • A paucity of heterochromatin at functional human neocentromeres
    • Alonso A., et al. A paucity of heterochromatin at functional human neocentromeres. Epigenet. Chromatin 2010, 3:6.
    • (2010) Epigenet. Chromatin , vol.3 , pp. 6
    • Alonso, A.1
  • 40
    • 0142247466 scopus 로고    scopus 로고
    • Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres
    • Alonso A., et al. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum. Mol. Genet. 2003, 12:2711-2721.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 2711-2721
    • Alonso, A.1
  • 41
    • 59249100073 scopus 로고    scopus 로고
    • LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin
    • Chueh A.C., et al. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet. 2009, 5:e1000354.
    • (2009) PLoS Genet. , vol.5
    • Chueh, A.C.1
  • 42
    • 77955006537 scopus 로고    scopus 로고
    • Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors
    • Bassett E.A., et al. Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors. J. Cell Biol. 2010, 190:177-185.
    • (2010) J. Cell Biol. , vol.190 , pp. 177-185
    • Bassett, E.A.1
  • 43
    • 0034845229 scopus 로고    scopus 로고
    • The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere
    • Maggert K.A., Karpen G.H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 2001, 158:1615-1628.
    • (2001) Genetics , vol.158 , pp. 1615-1628
    • Maggert, K.A.1    Karpen, G.H.2
  • 44
    • 79960028125 scopus 로고    scopus 로고
    • Heterochromatin boundaries are hotspots for de novo kinetochore formation
    • Olszak A.M., et al. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat. Cell Biol. 2011, 13:799-808.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 799-808
    • Olszak, A.M.1
  • 45
    • 33644542460 scopus 로고    scopus 로고
    • Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores
    • Heun P., et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 2006, 10:303-315.
    • (2006) Dev. Cell , vol.10 , pp. 303-315
    • Heun, P.1
  • 46
    • 50149103619 scopus 로고    scopus 로고
    • Heterochromatin integrity affects chromosome reorganization after centromere dysfunction
    • Ishii K., et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 2008, 321:1088-1091.
    • (2008) Science , vol.321 , pp. 1088-1091
    • Ishii, K.1
  • 47
    • 67849119717 scopus 로고    scopus 로고
    • Identification of a maize neocentromere in an oat-maize addition line
    • Topp C.N., et al. Identification of a maize neocentromere in an oat-maize addition line. Cytogenet. Genome Res. 2009, 124:228-238.
    • (2009) Cytogenet. Genome Res. , vol.124 , pp. 228-238
    • Topp, C.N.1
  • 48
    • 33748902375 scopus 로고    scopus 로고
    • The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype
    • Mroczek R.J., et al. The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype. Genetics 2006, 174:145-154.
    • (2006) Genetics , vol.174 , pp. 145-154
    • Mroczek, R.J.1
  • 49
    • 0029775626 scopus 로고    scopus 로고
    • Induction of centromeric activity in maize by suppressor of meiotic drive 1
    • Dawe R.K., Cande W.Z. Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:8512-8517.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 8512-8517
    • Dawe, R.K.1    Cande, W.Z.2
  • 50
    • 62149122605 scopus 로고    scopus 로고
    • Neocentromeres form efficiently at multiple possible loci in Candida albicans
    • Ketel C., et al. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet. 2009, 5:e1000400.
    • (2009) PLoS Genet. , vol.5
    • Ketel, C.1
  • 51
    • 77957337127 scopus 로고    scopus 로고
    • Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase
    • Koren A., et al. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet. 2010, 6:e1001068.
    • (2010) PLoS Genet. , vol.6
    • Koren, A.1
  • 52
    • 49949118733 scopus 로고    scopus 로고
    • Identification of replication origins in prokaryotic genomes
    • Sernova N.V., Gelfand M.S. Identification of replication origins in prokaryotic genomes. Brief. Bioinform. 2008, 9:376-391.
    • (2008) Brief. Bioinform. , vol.9 , pp. 376-391
    • Sernova, N.V.1    Gelfand, M.S.2
  • 53
    • 33846949409 scopus 로고    scopus 로고
    • The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension
    • Eckert C.A., et al. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev. 2007, 21:278-291.
    • (2007) Genes Dev. , vol.21 , pp. 278-291
    • Eckert, C.A.1
  • 54
    • 77957344530 scopus 로고    scopus 로고
    • Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
    • Stimpson K.M., et al. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet. 2010, 6:e1001061.
    • (2010) PLoS Genet. , vol.6
    • Stimpson, K.M.1
  • 55
    • 84879602911 scopus 로고    scopus 로고
    • The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy
    • Article ID 643628
    • MacKinnon R.N., Campbell L.J. The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. Genet. Res. Int. 2011, 2011. 11 p., Article ID 643628. 10.4061/2011/643628.
    • (2011) Genet. Res. Int. , vol.2011 , pp. 11
    • MacKinnon, R.N.1    Campbell, L.J.2
  • 56
    • 2342452435 scopus 로고    scopus 로고
    • Human centromere repositioning "in progress"
    • Amor D.J., et al. Human centromere repositioning "in progress" Proc. Natl. Acad. Sci. U.S.A. 2004, 101:6542-6547.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 6542-6547
    • Amor, D.J.1
  • 57
    • 70349471296 scopus 로고    scopus 로고
    • Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae
    • Luo M.C., et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15780-15785.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 15780-15785
    • Luo, M.C.1
  • 58
    • 82955235604 scopus 로고    scopus 로고
    • Inactivation of a centromere during the formation of a translocation in maize
    • Gao Z., et al. Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res. 2011, 19:755-761.
    • (2011) Chromosome Res. , vol.19 , pp. 755-761
    • Gao, Z.1
  • 59
    • 44149083326 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
    • Joglekar A.P., et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 2008, 181:587-594.
    • (2008) J. Cell Biol. , vol.181 , pp. 587-594
    • Joglekar, A.P.1
  • 60
    • 0029015661 scopus 로고
    • Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle
    • Winey M., et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 1995, 129:1601-1615.
    • (1995) J. Cell Biol. , vol.129 , pp. 1601-1615
    • Winey, M.1
  • 61
    • 69949150953 scopus 로고    scopus 로고
    • Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast
    • Lacefield S., et al. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat. Cell Biol. 2009, 11:1116-1120.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1116-1120
    • Lacefield, S.1
  • 62
    • 69949175138 scopus 로고    scopus 로고
    • A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast
    • Kiermaier E., et al. A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nat. Cell Biol. 2009, 11:1109-1115.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1109-1115
    • Kiermaier, E.1
  • 63
    • 80052849224 scopus 로고    scopus 로고
    • In vitro centromere and kinetochore assembly on defined chromatin templates
    • Guse A., et al. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 2011, 477:354-358.
    • (2011) Nature , vol.477 , pp. 354-358
    • Guse, A.1
  • 64
    • 80555125093 scopus 로고    scopus 로고
    • Drosophila CENH3 is sufficient for centromere formation
    • Mendiburo M.J., et al. Drosophila CENH3 is sufficient for centromere formation. Science 2011, 334:686-690.
    • (2011) Science , vol.334 , pp. 686-690
    • Mendiburo, M.J.1
  • 65
    • 79955539577 scopus 로고    scopus 로고
    • Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes
    • Gascoigne K.E., et al. Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes. Cell 2011, 145:410-422.
    • (2011) Cell , vol.145 , pp. 410-422
    • Gascoigne, K.E.1
  • 66
    • 37449015481 scopus 로고    scopus 로고
    • CENP-B controls centromere formation depending on the chromatin context
    • Okada T., et al. CENP-B controls centromere formation depending on the chromatin context. Cell 2007, 131:1287-1300.
    • (2007) Cell , vol.131 , pp. 1287-1300
    • Okada, T.1
  • 67
    • 79960113621 scopus 로고    scopus 로고
    • Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells
    • Mandegar M.A., et al. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum. Mol. Genet. 2011, 20:2905-2913.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 2905-2913
    • Mandegar, M.A.1
  • 68
    • 79961113679 scopus 로고    scopus 로고
    • HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore
    • Barnhart M.C., et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 2011, 194:229-243.
    • (2011) J. Cell Biol. , vol.194 , pp. 229-243
    • Barnhart, M.C.1
  • 69
    • 0036200147 scopus 로고    scopus 로고
    • Conserved organization of centromeric chromatin in flies and humans
    • Blower M.D., et al. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2002, 2:319-330.
    • (2002) Dev. Cell , vol.2 , pp. 319-330
    • Blower, M.D.1
  • 70
    • 81355161263 scopus 로고    scopus 로고
    • Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome
    • Lawrimore J., et al. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J. Cell Biol. 2011, 195:573-582.
    • (2011) J. Cell Biol. , vol.195 , pp. 573-582
    • Lawrimore, J.1
  • 71
    • 81355149553 scopus 로고    scopus 로고
    • CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast
    • Coffman V.C., et al. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J. Cell Biol. 2011, 195:563-572.
    • (2011) J. Cell Biol. , vol.195 , pp. 563-572
    • Coffman, V.C.1
  • 72
    • 84859599040 scopus 로고    scopus 로고
    • 'Point' centromeres of Saccharomyces harbor single CenH3 nucleosomes
    • Henikoff S., Henikoff J.G. 'Point' centromeres of Saccharomyces harbor single CenH3 nucleosomes. Genetics 2012, 10.1534/genetics.111.137711.
    • (2012) Genetics
    • Henikoff, S.1    Henikoff, J.G.2
  • 73
    • 70349168454 scopus 로고    scopus 로고
    • Cse4 is part of an octameric nucleosome in budding yeast
    • Camahort R., et al. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell. 2009, 35:794-805.
    • (2009) Mol. Cell. , vol.35 , pp. 794-805
    • Camahort, R.1
  • 74
    • 19644379975 scopus 로고    scopus 로고
    • Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy
    • Tomonaga T., et al. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res. 2005, 65:4683-4689.
    • (2005) Cancer Res. , vol.65 , pp. 4683-4689
    • Tomonaga, T.1
  • 75
    • 73249144668 scopus 로고    scopus 로고
    • CENPA overexpression promotes genome instability in pRb-depleted human cells
    • Amato A., et al. CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol. Cancer 2009, 8:119.
    • (2009) Mol. Cancer , vol.8 , pp. 119
    • Amato, A.1
  • 76
    • 79957461486 scopus 로고    scopus 로고
    • The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules
    • Burrack L.S., et al. The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules. Curr. Biol. 2011, 21:889-896.
    • (2011) Curr. Biol. , vol.21 , pp. 889-896
    • Burrack, L.S.1
  • 77
    • 79953045608 scopus 로고    scopus 로고
    • CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans
    • Roy B., et al. CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans. Mol. Microbiol. 2011, 80:14-32.
    • (2011) Mol. Microbiol. , vol.80 , pp. 14-32
    • Roy, B.1
  • 78
    • 34547639766 scopus 로고    scopus 로고
    • Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4
    • Castillo A.G., et al. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLoS Genet. 2007, 3:e121.
    • (2007) PLoS Genet. , vol.3
    • Castillo, A.G.1
  • 79
    • 33749569228 scopus 로고    scopus 로고
    • Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells
    • Liu S.T., et al. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 2006, 175:41-53.
    • (2006) J. Cell Biol. , vol.175 , pp. 41-53
    • Liu, S.T.1
  • 80
    • 78751636707 scopus 로고    scopus 로고
    • Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore
    • Bergmann J.H., et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 2011, 30:328-340.
    • (2011) EMBO J. , vol.30 , pp. 328-340
    • Bergmann, J.H.1
  • 81
    • 77957746094 scopus 로고    scopus 로고
    • Centromere protein A dynamics in human pluripotent stem cell self-renewal, differentiation and DNA damage
    • Ambartsumyan G., et al. Centromere protein A dynamics in human pluripotent stem cell self-renewal, differentiation and DNA damage. Hum. Mol. Genet. 2010, 19:3970-3982.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 3970-3982
    • Ambartsumyan, G.1
  • 82
    • 67649939154 scopus 로고    scopus 로고
    • Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres
    • Kagansky A., et al. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 2009, 324:1716-1719.
    • (2009) Science , vol.324 , pp. 1716-1719
    • Kagansky, A.1
  • 83
    • 0034762198 scopus 로고    scopus 로고
    • Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A
    • Van Hooser A.A., et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 2001, 114:3529-3542.
    • (2001) J. Cell Sci. , vol.114 , pp. 3529-3542
    • Van Hooser, A.A.1
  • 84
    • 34250173486 scopus 로고    scopus 로고
    • Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes
    • Mizuguchi G., et al. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 2007, 129:1153-1164.
    • (2007) Cell , vol.129 , pp. 1153-1164
    • Mizuguchi, G.1
  • 85
    • 36049013749 scopus 로고    scopus 로고
    • Structure, dynamics, and evolution of centromeric nucleosomes
    • Dalal Y., et al. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:15974-15981.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 15974-15981
    • Dalal, Y.1
  • 86
    • 79958032907 scopus 로고    scopus 로고
    • Heterochromatin is required for normal distribution of Neurospora crassa CenH3
    • Smith K.M., et al. Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol. Cell. Biol. 2011, 31:2528-2542.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2528-2542
    • Smith, K.M.1
  • 87
    • 0037318262 scopus 로고    scopus 로고
    • Sequence analysis of a functional Drosophila centromere
    • Sun X., et al. Sequence analysis of a functional Drosophila centromere. Genome Res. 2003, 13:182-194.
    • (2003) Genome Res. , vol.13 , pp. 182-194
    • Sun, X.1
  • 88
    • 16344384870 scopus 로고    scopus 로고
    • Identification of xenopus CENP-A and an associated centromeric DNA repeat
    • Edwards N.S., Murray A.W. Identification of xenopus CENP-A and an associated centromeric DNA repeat. Mol. Biol. Cell 2005, 16:1800-1810.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1800-1810
    • Edwards, N.S.1    Murray, A.W.2
  • 89
    • 77953574250 scopus 로고    scopus 로고
    • Vertebrate kinetochore protein architecture: protein copy number
    • Johnston K., et al. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 2010, 189:937-943.
    • (2010) J. Cell Biol. , vol.189 , pp. 937-943
    • Johnston, K.1
  • 90
    • 0035172929 scopus 로고    scopus 로고
    • CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells
    • McEwen B.F., et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 2001, 12:2776-2789.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 2776-2789
    • McEwen, B.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.