메뉴 건너뛰기




Volumn , Issue , 2008, Pages 61-69

Unsupervised feature selection for principal components analysis

Author keywords

PCA; Random sampling; Subset selection

Indexed keywords

AMOUNT OF INFORMATIONS; APPLICATION DOMAINS; DATA MATRICES; DATA-SETS; EIGENFEATURES; FEATURE MATRIXES; LINEAR DIMENSIONALITY REDUCTIONS; MODERATE VALUES; NUMERICAL LINEAR ALGEBRAS; PCA; PRINCIPAL COMPONENTS ANALYSIS; RANDOM SAMPLING; STATISTICAL DATA ANALYSIS; SUBSET SELECTION; TWO-STAGE ALGORITHMS; UNSUPERVISED FEATURE SELECTIONS;

EID: 65449139217     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401903     Document Type: Conference Paper
Times cited : (104)

References (44)
  • 1
    • 34548514458 scopus 로고    scopus 로고
    • A Direct Formulation for Sparse PCA Using Semidefinite Programming
    • July
    • A. d'Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A Direct Formulation for Sparse PCA Using Semidefinite Programming. SIAM Review, 49(3), July 2007
    • (2007) SIAM Review , vol.49 , Issue.3
    • d'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 2
    • 0142057962 scopus 로고    scopus 로고
    • Detecting stable clusters using principal component analysis
    • A. Ben-Hur and I. Guyon. Detecting stable clusters using principal component analysis. Methods Mol Biol, 224:159-182, 2003.
    • (2003) Methods Mol Biol , vol.224 , pp. 159-182
    • Ben-Hur, A.1    Guyon, I.2
  • 3
    • 30544452185 scopus 로고    scopus 로고
    • Computing sparse reduced-rank approximations to sparse matrices
    • Math Soft
    • M.W. Berry, S.A. Pulatova, and G.W. Stewart. Computing sparse reduced-rank approximations to sparse matrices. ACM Trans on Math Soft, 31:252-269, 2005.
    • (2005) ACM Trans on , vol.31 , pp. 252-269
    • Berry, M.W.1    Pulatova, S.A.2    Stewart, G.W.3
  • 4
    • 0032083879 scopus 로고    scopus 로고
    • Algorithm 782: Codes for rank-revealing QR factorizations of dense matrices
    • Math Soft
    • C. H. Bischof and G. Qintana-Orti. Algorithm 782: codes for rank-revealing QR factorizations of dense matrices. ACM Trans on Math Soft, 24:254-257, 1998.
    • (1998) ACM Trans on , vol.24 , pp. 254-257
    • Bischof, C.H.1    Qintana-Orti, G.2
  • 5
    • 0032083715 scopus 로고    scopus 로고
    • Computing rank-revealing QR factorizations of dense matrices
    • Math Soft
    • C.H. Bischof and G. Quintana-Orti. Computing rank-revealing QR factorizations of dense matrices. ACM Trans on Math Soft, 24(2):226-253, 1998.
    • (1998) ACM Trans on , vol.24 , Issue.2 , pp. 226-253
    • Bischof, C.H.1    Quintana-Orti, G.2
  • 7
    • 4444375377 scopus 로고    scopus 로고
    • Computational aspects of algorithms for variable selection in the context of principal components
    • J. Cadima, J. O. Cerdeira, and M. Minhoto. Computational aspects of algorithms for variable selection in the context of principal components. Computational Statistics & Data Analysis, 47(2):225-236, 2004.
    • (2004) Computational Statistics & Data Analysis , vol.47 , Issue.2 , pp. 225-236
    • Cadima, J.1    Cerdeira, J.O.2    Minhoto, M.3
  • 8
    • 0002170151 scopus 로고
    • Rank revealing QR factorizations
    • T. F. Chan. Rank revealing QR factorizations. Linear Algebra Appl, 88/89:67-82, 1987.
    • (1987) Linear Algebra Appl , vol.88-89 , pp. 67-82
    • Chan, T.F.1
  • 9
    • 0001326391 scopus 로고
    • Some applications of the rank revealing QR factorization
    • T.F. Chan and P.C. Hansen. Some applications of the rank revealing QR factorization. SIAM J Sei and Stat Comp, 13:727-741, 1992.
    • (1992) SIAM J Sei and Stat Comp , vol.13 , pp. 727-741
    • Chan, T.F.1    Hansen, P.C.2
  • 10
    • 84985405500 scopus 로고
    • Low-rank revealing QR factorizations
    • T. F. Chan and P.C. Hansen. Low-rank revealing QR factorizations. Linear Algebra Appl, 1:33-44, 1994.
    • (1994) Linear Algebra Appl , vol.1 , pp. 33-44
    • Chan, T.F.1    Hansen, P.C.2
  • 12
    • 33244455701 scopus 로고    scopus 로고
    • Matrix approximation and projective clustering via volume sampling
    • A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering via volume sampling. SODA, 2006
    • (2006) SODA
    • Deshpande, A.1    Rademacher, L.2    Vempala, S.3    Wang, G.4
  • 13
    • 0002390851 scopus 로고    scopus 로고
    • Efficient feature selection in conceptual clustering
    • M. Devaney and A. Ram. Efficient feature selection in conceptual clustering. In ICML, 1997.
    • (1997) ICML
    • Devaney, M.1    Ram, A.2
  • 14
    • 67649146803 scopus 로고    scopus 로고
    • Subspace sampling and relative-error matrix approximation: Column-based methods
    • P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error matrix approximation: Column-based methods, APPROX-RANDOM, 2006.
    • (2006) APPROX-RANDOM
    • Drineas, P.1    Mahoney, M.W.2    Muthukrishnan, S.3
  • 16
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J G. Dy and C. E. Brodley. Feature selection for unsupervised learning. J. Mach. Learn. Res., 5:845-889, 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 17
    • 0033423414 scopus 로고    scopus 로고
    • UTV tools: Matlab templates for rank-revealing UTV decompositions
    • R.D. Fierro, P.C. Hansen, and P. Hansen. UTV tools: Matlab templates for rank-revealing UTV decompositions. Numerical Algorithms, 20(2-3):165-194, 1999.
    • (1999) Numerical Algorithms , vol.20 , Issue.2-3 , pp. 165-194
    • Fierro, R.D.1    Hansen, P.C.2    Hansen, P.3
  • 18
    • 38249043588 scopus 로고
    • Rank and null space calculations using matrix decomposition without column interchanges
    • L. V. Foster. Rank and null space calculations using matrix decomposition without column interchanges. Linear Algebra Appl, 74:47-71, 1986.
    • (1986) Linear Algebra Appl , vol.74 , pp. 47-71
    • Foster, L.V.1
  • 19
    • 65449121380 scopus 로고    scopus 로고
    • Comparison of rank revealing algorithms applied to matrices with well defined numerical ranks
    • manuscript
    • L. V. Foster and Xinrong Liu. Comparison of rank revealing algorithms applied to matrices with well defined numerical ranks, manuscript, 2006.
    • (2006)
    • Foster, L.V.1    Liu, X.2
  • 20
    • 0032308232 scopus 로고    scopus 로고
    • Fast Monte-Carlo algorithms for finding low-rank approximations
    • A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations, FOCS, 1998
    • (1998) FOCS
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 21
    • 14344259210 scopus 로고    scopus 로고
    • Text categorization with many redundant features: Using aggressive feature selection to make SVMs competitive with C4.5
    • E. Gabrilovich and S. Markovitch. Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4.5. ICML, 2004
    • (2004) ICML
    • Gabrilovich, E.1    Markovitch, S.2
  • 22
    • 0000924593 scopus 로고
    • Numerical methods for solving linear least squares problems
    • G. H. Golub. Numerical methods for solving linear least squares problems. Numer Math, 7:206-216, 1965.
    • (1965) Numer Math , vol.7 , pp. 206-216
    • Golub, G.H.1
  • 23
    • 65449158710 scopus 로고    scopus 로고
    • G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 1989.
    • G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 1989.
  • 24
    • 0003216822 scopus 로고    scopus 로고
    • Efficient algorithms for computing a strong rank-revealing QR factorization
    • M. Gu and S.C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J Sci Comp, 17:848-869, 1996.
    • (1996) SIAM J Sci Comp , vol.17 , pp. 848-869
    • Gu, M.1    Eisenstat, S.C.2
  • 25
    • 84968501766 scopus 로고
    • Rank-revealing QR factorizations and the singular value decomposition
    • Y. P. Hong and C. T. Pan. Rank-revealing QR factorizations and the singular value decomposition. Math Comp, 58:213-232, 1992.
    • (1992) Math Comp , vol.58 , pp. 213-232
    • Hong, Y.P.1    Pan, C.T.2
  • 26
    • 0002457803 scopus 로고
    • Selection of variables to preserve multivariate data structure, using principal components
    • W. J. Krzanowski. Selection of variables to preserve multivariate data structure, using principal components. Applied Statistics, 36(1):22-33, 1987.
    • (1987) Applied Statistics , vol.36 , Issue.1 , pp. 22-33
    • Krzanowski, W.J.1
  • 27
    • 0038217829 scopus 로고    scopus 로고
    • Vector algebra in the analysis of genome-wide expression data
    • F.G. Kuruvilla and P.J. Park and S.L. Schreiber. Vector algebra in the analysis of genome-wide expression data. Genome Biology, 3, 2002.
    • (2002) Genome Biology , vol.3
    • Kuruvilla, F.G.1    Park, P.J.2    Schreiber, S.L.3
  • 28
    • 17444406668 scopus 로고    scopus 로고
    • Identifying critical variables of principal components for unsupervised feature selection
    • K. Z. Mao. Identifying critical variables of principal components for unsupervised feature selection. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(2):339-344, 2005.
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.35 , Issue.2 , pp. 339-344
    • Mao, K.Z.1
  • 29
    • 33749575020 scopus 로고    scopus 로고
    • M.W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions for tensor-based data, KDD, 2006.
    • M.W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions for tensor-based data, KDD, 2006.
  • 30
    • 0018080152 scopus 로고
    • Synthetic maps of human gene frequencies in Europeans
    • P. Menozzi, A. Piazza, and L. Cavalli-Sforza. Synthetic maps of human gene frequencies in Europeans . Science, 201(4358):786-792, 1978.
    • (1978) Science , vol.201 , Issue.4358 , pp. 786-792
    • Menozzi, P.1    Piazza, A.2    Cavalli-Sforza, L.3
  • 32
    • 84868918658 scopus 로고    scopus 로고
    • Open Directory Project, http://www.dmoz.org/
  • 33
    • 0034392123 scopus 로고    scopus 로고
    • On the existence and computation of rank-revealing LU factorizations
    • C. T. Pan. On the existence and computation of rank-revealing LU factorizations. Linear Algebra Appl, 316:199-222, 2000.
    • (2000) Linear Algebra Appl , vol.316 , pp. 199-222
    • Pan, C.T.1
  • 34
    • 0001972217 scopus 로고    scopus 로고
    • Bounds on singular values revealed by QR factorizations
    • C. T. Pan and P. T. P. Tang. Bounds on singular values revealed by QR factorizations. BIT Numerical Mathematics, 39:740-756, 1999.
    • (1999) BIT Numerical Mathematics , vol.39 , pp. 740-756
    • Pan, C.T.1    Tang, P.T.P.2
  • 37
    • 0347362518 scopus 로고    scopus 로고
    • Informativeness of genetic markers for inference of ancestry
    • N.A. Rosenberg, L.M. Li, R. Ward, and J.K. Pritchard. Informativeness of genetic markers for inference of ancestry. Am J Hum Genet, 73(6):1402-1422, 2003.
    • (2003) Am J Hum Genet , vol.73 , Issue.6 , pp. 1402-1422
    • Rosenberg, N.A.1    Li, L.M.2    Ward, R.3    Pritchard, J.K.4
  • 38
    • 0040117178 scopus 로고    scopus 로고
    • Four algorithms for the efficient computation of truncated QR approximations to a sparse matrix
    • G.W. Stewart. Four algorithms for the efficient computation of truncated QR approximations to a sparse matrix. Num Math, 83:313-323, 1999.
    • (1999) Num Math , vol.83 , pp. 313-323
    • Stewart, G.W.1
  • 39
    • 2942701493 scopus 로고    scopus 로고
    • Ranking a random feature for variable and feature selection
    • H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for variable and feature selection. J. Mach. Learn. Res., 3:1399-1414, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1399-1414
    • Stoppiglia, H.1    Dreyfus, G.2    Dubois, R.3    Oussar, Y.4
  • 40
    • 49749100928 scopus 로고    scopus 로고
    • J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix decomposition for large sparse graphs, SDM, 2007.
    • J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix decomposition for large sparse graphs, SDM, 2007.
  • 41
    • 79959524146 scopus 로고    scopus 로고
    • A haplotype map of the human genome
    • The International HapMap Consortium
    • The International HapMap Consortium. A haplotype map of the human genome. Nature, 437:1299-1320, 2005.
    • (2005) Nature , vol.437 , pp. 1299-1320
  • 42
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach. J. Mach. Learn. Res., 6:1855-1887, 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 43
    • 65149104302 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Z. Zhao and H. Liu. Spectral feature selection for supervised and unsupervised learning. In ICML, 2007.
    • (2007) ICML
    • Zhao, Z.1    Liu, H.2
  • 44
    • 84868926908 scopus 로고    scopus 로고
    • http://finance.yahoo.com/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.