메뉴 건너뛰기




Volumn , Issue , 2007, Pages 65-72

Active learning for misspecified generalized linear models

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; ALGORITHMIC FRAMEWORK; BINARY CLASSIFICATION; CONVEX OPTIMIZATION PROBLEMS; GENERALIZATION ERROR; GENERALIZATION PERFORMANCE; GENERALIZED LINEAR MODEL; LEARNING METHODS; MERCER KERNEL; MISSPECIFICATION; MULTI-CLASS CLASSIFICATION; SAMPLING DISTRIBUTION; TRAINING DATA; UNBIASED ESTIMATOR;

EID: 34248997891     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (39)

References (26)
  • 3
    • 0008459545 scopus 로고
    • On efficient designing of nonlinear experiments
    • P. Chaudhuri and P. A. Mykland. On efficient designing of nonlinear experiments. Stat. Sin., 5:421-440, 1995.
    • (1995) Stat. Sin. , vol.5 , pp. 421-440
    • Chaudhuri, P.1    Mykland, P.A.2
  • 4
    • 33749254010 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In Adv. NIPS 18, 2006.
    • (2006) Adv. NIPS , vol.18
    • Dasgupta, S.1
  • 5
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A.McCallum. Toward optimal active learning through sampling estimation of error reduction. In Proc. ICML, 2001.
    • (2001) Proc. ICML
    • Roy, N.1    McCallum, A.2
  • 6
    • 0034792634 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval
    • S. Tong and E. Chang. Support vector machine active learning for image retrieval. In Proc. ACM Multimedia, 2001.
    • (2001) Proc. ACM Multimedia
    • Tong, S.1    Chang, E.2
  • 8
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In Proc. ICML, 2003.
    • (2003) Proc. ICML
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3
  • 11
    • 0005004572 scopus 로고    scopus 로고
    • A probability analysis on the value of unlabeled data for classification problems
    • T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for classification problems. In Proc. ICML, 2000.
    • (2000) Proc. ICML
    • Zhang, T.1    Oles, F.J.2
  • 12
    • 37249093580 scopus 로고    scopus 로고
    • Active learning for parzen window classifier
    • O. Chapelle. Active learning for parzen window classifier. In Proc. AISTATS, 2005.
    • (2005) Proc. AISTATS
    • Chapelle, O.1
  • 13
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Inf., 90:227-244, 2000.
    • (2000) J. Stat. Plan. Inf. , vol.90 , pp. 227-244
    • Shimodaira, H.1
  • 16
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVMtraining using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVMtraining using low-rank kernel representations. J. Mach. Learn. Res., 2:243-264, 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 17
    • 0003007938 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In Proc. ICML, 2000.
    • (2000) Proc. ICML
    • Tong, S.1    Koller, D.2
  • 18
    • 0000413255 scopus 로고    scopus 로고
    • Active learning in multilayer perceptrons
    • K. Fukumizu. Active learning in multilayer perceptrons. In Adv. NIPS 8, 1996.
    • (1996) Adv. NIPS , vol.8
    • Fukumizu, K.1
  • 19
    • 0038647337 scopus 로고    scopus 로고
    • Active learning algorithm using the maximum weighted log-likelihood estimator
    • T. Kanamori and H. Shimodaira. Active learning algorithm using the maximum weighted log-likelihood estimator. J. Stat. Plan. Inf., 116:149-162, 2003.
    • (2003) J. Stat. Plan. Inf. , vol.116 , pp. 149-162
    • Kanamori, T.1    Shimodaira, H.2
  • 20
    • 12244310470 scopus 로고    scopus 로고
    • Statistical asymptotic theory of active learning
    • T. Kanamori. Statistical asymptotic theory of active learning. Ann. Inst. Stat. Math., 54(3):459-475, 2002.
    • (2002) Ann. Inst. Stat. Math. , vol.54 , Issue.3 , pp. 459-475
    • Kanamori, T.1
  • 21
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • H. White. Maximum likelihood estimation of misspecified models. Econometrica, 50(1):1-26, 1982.
    • (1982) Econometrica , vol.50 , Issue.1 , pp. 1-26
    • White, H.1
  • 22
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • H. Akaike. A new look at statistical model identification. IEEE Trans. Aut. Cont., 19:716-722, 1974.
    • (1974) IEEE Trans. Aut. Cont. , vol.19 , pp. 716-722
    • Akaike, H.1
  • 25
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. MacKay. Information-based objective functions for active data selection. Neural Computation, 4(4):590-604, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.1
  • 26
    • 84898928156 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Y. Bengio and Y Grandvalet. Semi-supervised learning by entropy minimization. In Adv. NIPS 17, 2005.
    • (2005) Adv. NIPS , vol.17
    • Bengio, Y.1    Grandvalet, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.