메뉴 건너뛰기




Volumn , Issue , 2009, Pages 153-161

Unsupervised feature selection for the k-means clustering problem

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE SELECTION;

EID: 78650966380     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (138)

References (33)
  • 4
    • 84972496372 scopus 로고
    • Influential observations, high leverage points, and outliers in linear regression
    • S. Chatterjee and A. S. Hadi. Influential observations, high leverage points, and outliers in linear regression. Statistical Science, 1:379-393, 1986.
    • (1986) Statistical Science , vol.1 , pp. 379-393
    • Chatterjee, S.1    Hadi, A.S.2
  • 9
    • 0016484071 scopus 로고
    • An optimal set of discriminant vectors
    • J.W. March
    • D. Foley and J. Sammon, J.W. An optimal set of discriminant vectors. IEEE Transactions on Computers, C-24(3):281-289, March 1975.
    • (1975) IEEE Transactions on Computers , vol.C-24 , Issue.3 , pp. 281-289
    • Foley, D.1    Sammon, J.2
  • 11
  • 15
    • 0004185151 scopus 로고
    • John Wiley & Sons, Inc. New York, NY, USA
    • J.A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc. New York, NY, USA, 1975.
    • (1975) Clustering Algorithms
    • Hartigan, J.A.1
  • 17
    • 84968501766 scopus 로고
    • Rank-revealing QR factorizations and the singular value decomposition
    • Y.P. Hong and C.T. Pan. Rank-revealing QR factorizations and the singular value decomposition. Mathematics of Computation, 58:213232, 1992.
    • (1992) Mathematics of Computation , vol.58 , pp. 213232
    • Hong, Y.P.1    Pan, C.T.2
  • 18
    • 0000146283 scopus 로고
    • Discarding variables in a principal component analysis. I: Artificial data
    • I. Jolliffe. Discarding variables in a principal component analysis. I: Artificial data. Applied Statistics, 21(2):160-173, 1972.
    • (1972) Applied Statistics , vol.21 , Issue.2 , pp. 160-173
    • Jolliffe, I.1
  • 19
    • 0002008085 scopus 로고
    • Discarding variables in a principal component analysis. II: Real data
    • I. Jolliffe. Discarding variables in a principal component analysis. II: Real data. Applied Statistics, 22(1):21-31, 1973.
    • (1973) Applied Statistics , vol.22 , Issue.1 , pp. 21-31
    • Jolliffe, I.1
  • 20
    • 0002457803 scopus 로고
    • Selection of variables to preserve multivariate data structure, using principal components
    • W. Krzanowski. Selection of variables to preserve multivariate data structure, using principal components. Applied Statistics, 36(1):22-33, 1987.
    • (1987) Applied Statistics , vol.36 , Issue.1 , pp. 22-33
    • Krzanowski, W.1
  • 22
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Unpublished portions presented at the Institute of Mathematical Statistics Meeting Atlantic City, NJ, September 1957. Also, IEEE Trans Inform Theory (Special Issue on Quantization) March
    • S.P. Lloyd. Least squares quantization in PCM. Unpublished Bell Lab. Tech. Note, portions presented at the Institute of Mathematical Statistics Meeting Atlantic City, NJ, September 1957. Also, IEEE Trans Inform Theory (Special Issue on Quantization), vol IT-28, pages 129-137, March 1982.
    • (1982) Bell Lab. Tech. Note , vol.IT-28 , pp. 129-137
    • Lloyd, S.P.1
  • 25
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • Dec.
    • A. Malhi and R. Gao. PCA-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement, 53(6):1517-1525, Dec. 2004.
    • (2004) IEEE Transactions on Instrumentation and Measurement , vol.53 , Issue.6 , pp. 1517-1525
    • Malhi, A.1    Gao, R.2
  • 26
    • 17444406668 scopus 로고    scopus 로고
    • Identifying critical variables of principal components for unsupervised feature selection
    • April
    • K. Mao. Identifying critical variables of principal components for unsupervised feature selection. IEEE Transactions on Systems, Man, and Cybernetics, 35(2):339-344, April 2005.
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics , vol.35 , Issue.2 , pp. 339-344
    • Mao, K.1
  • 27
    • 0037070754 scopus 로고    scopus 로고
    • Molecular characterisation of soft tissue tumors: A gene expression study
    • T. Nielsen et al. Molecular characterisation of soft tissue tumors: A gene expression study. Lancet, 359:1301-1307, 2002.
    • (2002) Lancet , vol.359 , pp. 1301-1307
    • Nielsen, T.1
  • 29
    • 34547728320 scopus 로고    scopus 로고
    • Sampling from large matrices: An approach through geometric functional analysis
    • July
    • M. Rudelson, and R. Vershynin, Sampling from large matrices: An approach through geometric functional analysis. Journal of the ACM (JACM), 54(4), July 2007.
    • (2007) Journal of the ACM (JACM) , vol.54 , Issue.4
    • Rudelson, M.1    Vershynin, R.2
  • 30
    • 21244444543 scopus 로고    scopus 로고
    • Gene selection for microarray data analysis using principal component analysis
    • July
    • A. Wang and E. A. Gehan. Gene selection for microarray data analysis using principal component analysis. Stat Med, 24(13):2069-2087, July 2005.
    • (2005) Stat Med , vol.24 , Issue.13 , pp. 2069-2087
    • Wang, A.1    Gehan, E.A.2
  • 32
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining analysis
    • X. Wu et al. Top 10 algorithms in data mining analysis. Knowl. Inf. Syst., 14(1):1-37, 2007.
    • (2007) Knowl. Inf. Syst. , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1
  • 33
    • 38349093039 scopus 로고    scopus 로고
    • Constraint score: A new filter method for feature selection with pairwise constraints
    • D. Zhang, S. Chen, and Z.-H. Zhou. Constraint score: A new filter method for feature selection with pairwise constraints. Pattern Recognition, 41(5):1440-1451, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1440-1451
    • Zhang, D.1    Chen, S.2    Zhou, Z.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.