-
4
-
-
84972496372
-
Influential observations, high leverage points, and outliers in linear regression
-
S. Chatterjee and A. S. Hadi. Influential observations, high leverage points, and outliers in linear regression. Statistical Science, 1:379-393, 1986.
-
(1986)
Statistical Science
, vol.1
, pp. 379-393
-
-
Chatterjee, S.1
Hadi, A.S.2
-
6
-
-
0032800925
-
Clustering in large graphs and matrices
-
P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs and matrices. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 291-299, 1999.
-
(1999)
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
, pp. 291-299
-
-
Drineas, P.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
Vinay, V.5
-
9
-
-
0016484071
-
An optimal set of discriminant vectors
-
J.W. March
-
D. Foley and J. Sammon, J.W. An optimal set of discriminant vectors. IEEE Transactions on Computers, C-24(3):281-289, March 1975.
-
(1975)
IEEE Transactions on Computers
, vol.C-24
, Issue.3
, pp. 281-289
-
-
Foley, D.1
Sammon, J.2
-
10
-
-
35748975681
-
Euclidean embedding of co-occurrence data
-
A. Globerson, G. Chechik, F. Pereira, and N. Tishby. Euclidean Embedding of Co-occurrence Data. The Journal of Machine Learning Research, 8:2265-2295, 2007.
-
(2007)
The Journal of Machine Learning Research
, vol.8
, pp. 2265-2295
-
-
Globerson, A.1
Chechik, G.2
Pereira, F.3
Tishby, N.4
-
14
-
-
84898964855
-
Result analysis of the NIPS 2003 feature selection challenge
-
I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS 2003 feature selection challenge. In Advances in Neural Information Processing Systems (NIPS) 17, pages 545-552, 2005.
-
(2005)
Advances in Neural Information Processing Systems (NIPS)
, vol.17
, pp. 545-552
-
-
Guyon, I.1
Gunn, S.2
Ben-Hur, A.3
Dror, G.4
-
15
-
-
0004185151
-
-
John Wiley & Sons, Inc. New York, NY, USA
-
J.A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc. New York, NY, USA, 1975.
-
(1975)
Clustering Algorithms
-
-
Hartigan, J.A.1
-
17
-
-
84968501766
-
Rank-revealing QR factorizations and the singular value decomposition
-
Y.P. Hong and C.T. Pan. Rank-revealing QR factorizations and the singular value decomposition. Mathematics of Computation, 58:213232, 1992.
-
(1992)
Mathematics of Computation
, vol.58
, pp. 213232
-
-
Hong, Y.P.1
Pan, C.T.2
-
18
-
-
0000146283
-
Discarding variables in a principal component analysis. I: Artificial data
-
I. Jolliffe. Discarding variables in a principal component analysis. I: Artificial data. Applied Statistics, 21(2):160-173, 1972.
-
(1972)
Applied Statistics
, vol.21
, Issue.2
, pp. 160-173
-
-
Jolliffe, I.1
-
19
-
-
0002008085
-
Discarding variables in a principal component analysis. II: Real data
-
I. Jolliffe. Discarding variables in a principal component analysis. II: Real data. Applied Statistics, 22(1):21-31, 1973.
-
(1973)
Applied Statistics
, vol.22
, Issue.1
, pp. 21-31
-
-
Jolliffe, I.1
-
20
-
-
0002457803
-
Selection of variables to preserve multivariate data structure, using principal components
-
W. Krzanowski. Selection of variables to preserve multivariate data structure, using principal components. Applied Statistics, 36(1):22-33, 1987.
-
(1987)
Applied Statistics
, vol.36
, Issue.1
, pp. 22-33
-
-
Krzanowski, W.1
-
22
-
-
0020102027
-
Least squares quantization in PCM
-
Unpublished portions presented at the Institute of Mathematical Statistics Meeting Atlantic City, NJ, September 1957. Also, IEEE Trans Inform Theory (Special Issue on Quantization) March
-
S.P. Lloyd. Least squares quantization in PCM. Unpublished Bell Lab. Tech. Note, portions presented at the Institute of Mathematical Statistics Meeting Atlantic City, NJ, September 1957. Also, IEEE Trans Inform Theory (Special Issue on Quantization), vol IT-28, pages 129-137, March 1982.
-
(1982)
Bell Lab. Tech. Note
, vol.IT-28
, pp. 129-137
-
-
Lloyd, S.P.1
-
23
-
-
37849000197
-
Feature selection using principal feature analysis
-
Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian. Feature selection using principal feature analysis. In Proceedings of the 15th international conference on Multimedia, pages 301-304, 2007.
-
(2007)
Proceedings of the 15th International Conference on Multimedia
, pp. 301-304
-
-
Lu, Y.1
Cohen, I.2
Zhou, X.S.3
Tian, Q.4
-
25
-
-
10244259183
-
PCA-based feature selection scheme for machine defect classification
-
Dec.
-
A. Malhi and R. Gao. PCA-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement, 53(6):1517-1525, Dec. 2004.
-
(2004)
IEEE Transactions on Instrumentation and Measurement
, vol.53
, Issue.6
, pp. 1517-1525
-
-
Malhi, A.1
Gao, R.2
-
26
-
-
17444406668
-
Identifying critical variables of principal components for unsupervised feature selection
-
April
-
K. Mao. Identifying critical variables of principal components for unsupervised feature selection. IEEE Transactions on Systems, Man, and Cybernetics, 35(2):339-344, April 2005.
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.35
, Issue.2
, pp. 339-344
-
-
Mao, K.1
-
27
-
-
0037070754
-
Molecular characterisation of soft tissue tumors: A gene expression study
-
T. Nielsen et al. Molecular characterisation of soft tissue tumors: A gene expression study. Lancet, 359:1301-1307, 2002.
-
(2002)
Lancet
, vol.359
, pp. 1301-1307
-
-
Nielsen, T.1
-
28
-
-
35348899361
-
The effectiveness of lloyd-type methods for the k-means problem
-
R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of Lloyd-type methods for the k-means problem. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 165-176, 2006.
-
(2006)
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS)
, pp. 165-176
-
-
Ostrovsky, R.1
Rabani, Y.2
Schulman, L.J.3
Swamy, C.4
-
29
-
-
34547728320
-
Sampling from large matrices: An approach through geometric functional analysis
-
July
-
M. Rudelson, and R. Vershynin, Sampling from large matrices: An approach through geometric functional analysis. Journal of the ACM (JACM), 54(4), July 2007.
-
(2007)
Journal of the ACM (JACM)
, vol.54
, Issue.4
-
-
Rudelson, M.1
Vershynin, R.2
-
30
-
-
21244444543
-
Gene selection for microarray data analysis using principal component analysis
-
July
-
A. Wang and E. A. Gehan. Gene selection for microarray data analysis using principal component analysis. Stat Med, 24(13):2069-2087, July 2005.
-
(2005)
Stat Med
, vol.24
, Issue.13
, pp. 2069-2087
-
-
Wang, A.1
Gehan, E.A.2
-
31
-
-
53049094679
-
A fast randomized algorithm for the approximation of matrices
-
F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for the approximation of matrices. Applied and Computational Harmonic Analysis, 25 (3): 335-366, 2008.
-
(2008)
Applied and Computational Harmonic Analysis
, vol.25
, Issue.3
, pp. 335-366
-
-
Woolfe, F.1
Liberty, E.2
Rokhlin, V.3
Tygert, M.4
-
32
-
-
37549018049
-
Top 10 algorithms in data mining analysis
-
X. Wu et al. Top 10 algorithms in data mining analysis. Knowl. Inf. Syst., 14(1):1-37, 2007.
-
(2007)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
-
33
-
-
38349093039
-
Constraint score: A new filter method for feature selection with pairwise constraints
-
D. Zhang, S. Chen, and Z.-H. Zhou. Constraint score: A new filter method for feature selection with pairwise constraints. Pattern Recognition, 41(5):1440-1451, 2008.
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 1440-1451
-
-
Zhang, D.1
Chen, S.2
Zhou, Z.-H.3
|