메뉴 건너뛰기




Volumn 17, Issue 3, 2012, Pages 1079-1093

Mitochondrial and nuclear genomic integrity after oxidative damage in saccharomyces cerevisiae

Author keywords

Damage sensing; DNA lesions; DNA repair; Glucose repression; Iron sulfur cluster proteins; Mitochondria; Oxidative stress; Review; Saccharomyces cerevisiae

Indexed keywords

SACCHAROMYCES CEREVISIAE;

EID: 84859219993     PISSN: 27686701     EISSN: 27686698     Source Type: Journal    
DOI: 10.2741/3974     Document Type: Article
Times cited : (12)

References (107)
  • 2
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • R.A. Sclafani and T.M. Holzen: Cell cycle regulation of DNA replication. Annu Rev Genet 41, 237-280 (2007).
    • (2007) Annu Rev Genet , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 3
    • 69249203534 scopus 로고    scopus 로고
    • Focus on the centre: The role of chromatin on the regulation of centromere identity and function
    • M. Torras-Llort, O. Moreno-Moreno, and F. Azorin: Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO J 28, 2337- 2348 (2009).
    • (2009) EMBO J , vol.28 , pp. 2337-2348
    • Torras-Llort, M.1    Moreno-Moreno, O.2    Azorin, F.3
  • 4
    • 70350397570 scopus 로고    scopus 로고
    • Epigenetic specification of centromeres by CENP-A
    • R. Bernad, P. Sanchez, and A. Losada: Epigenetic specification of centromeres by CENP-A. Exp Cell Res 315, 3233-3241 (2009).
    • (2009) Exp Cell Res , vol.315 , pp. 3233-3241
    • Bernad, R.1    Sanchez, P.2    Losada, A.3
  • 5
    • 70349665214 scopus 로고    scopus 로고
    • Life without RNAi: Noncoding RNAs and their functions in Saccharomyces cerevisiae
    • B.R. Harrison, O. Yazgan, and J.E. Krebs: Life without RNAi: noncoding RNAs and their functions in Saccharomyces cerevisiae. Biochem Cell Biol 87, 767-779 (2009).
    • (2009) Biochem Cell Biol , vol.87 , pp. 767-779
    • Harrison, B.R.1    Yazgan, O.2    Krebs, J.E.3
  • 6
    • 67149111884 scopus 로고    scopus 로고
    • Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions
    • A. Miele, K. Bystricky, and J. Dekker: Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. PLoS Genet 5, e1000478 (2009).
    • (2009) PLoS Genet , vol.5
    • Miele, A.1    Bystricky, K.2    Dekker, J.3
  • 7
    • 62849115107 scopus 로고    scopus 로고
    • Repeated elements coordinate the spatial organization of the yeast genome
    • J.M. O'Sullivan, D.M. Sontam, R. Grierson, and B. Jones: Repeated elements coordinate the spatial organization of the yeast genome. Yeast 26, 125-138 (2009).
    • (2009) Yeast , vol.26 , pp. 125-138
    • O'sullivan, J.M.1    Sontam, D.M.2    Grierson, R.3    Jones, B.4
  • 8
    • 75149171523 scopus 로고    scopus 로고
    • Silent information regulator 3: The Goldilocks of the silencing complex
    • A. Norris and J.D. Boeke: Silent information regulator 3: the Goldilocks of the silencing complex. Genes Dev 24, 115-122 (2010).
    • (2010) Genes Dev , vol.24 , pp. 115-122
    • Norris, A.1    Boeke, J.D.2
  • 9
    • 63049116550 scopus 로고    scopus 로고
    • Heterochromatin and the cohesion of sister chromatids
    • M. Gartenberg: Heterochromatin and the cohesion of sister chromatids. Chromosome Res 17, 229-238 (2009).
    • (2009) Chromosome Res , vol.17 , pp. 229-238
    • Gartenberg, M.1
  • 10
    • 34547916813 scopus 로고    scopus 로고
    • Moving marks: Dynamic histone modifications in yeast
    • DOI 10.1039/b703923a
    • J.E. Krebs: Moving marks: dynamic histone modifications in yeast. Mol Biosyst 3, 590-597 (2007). (Pubitemid 47258224)
    • (2007) Molecular BioSystems , vol.3 , Issue.9 , pp. 590-597
    • Krebs, J.E.1
  • 11
    • 28444456705 scopus 로고    scopus 로고
    • The histone code at DNA breaks: A guide to repair?
    • DOI 10.1038/nrm1737
    • H. van Attikum and S.M. Gasser: The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6, 757- 765 (2005). (Pubitemid 41726114)
    • (2005) Nature Reviews Molecular Cell Biology , vol.6 , Issue.10 , pp. 757-765
    • Van Attikum, H.1    Gasser, S.M.2
  • 12
    • 74249093169 scopus 로고    scopus 로고
    • Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin
    • S.A. Kawashima, Y. Yamagishi, T. Honda, K.-i. Ishiguro, and Y. Watanabe: Phosphorylation of H2A by Bub1 Prevents Chromosomal Instability Through Localizing Shugoshin. Science 327, 172-177 (2010).
    • (2010) Science , vol.327 , pp. 172-177
    • Kawashima, S.A.1    Yamagishi, Y.2    Honda, T.3    Ishiguro, K.-I.4    Watanabe, Y.5
  • 13
    • 64749090812 scopus 로고    scopus 로고
    • Methylation of H3 K4 and K79 is not strictly dependent on H2B K123 ubiquitylation
    • E.R. Foster and J.A. Downs: Methylation of H3 K4 and K79 is not strictly dependent on H2B K123 ubiquitylation. J Cell Biol 184, 631-638 (2009).
    • (2009) J Cell Biol , vol.184 , pp. 631-638
    • Foster, E.R.1    Downs, J.A.2
  • 14
    • 18844413266 scopus 로고    scopus 로고
    • Acetylation in histone H3 globular domain regulates gene expression in yeast
    • DOI 10.1016/j.cell.2005.03.011, PII S0092867405002837
    • F. Xu, K. Zhang, and M. Grunstein: Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375-385 (2005). (Pubitemid 40692298)
    • (2005) Cell , vol.121 , Issue.3 , pp. 375-385
    • Xu, F.1    Zhang, K.2    Grunstein, M.3
  • 16
    • 34249818195 scopus 로고    scopus 로고
    • Histone variants and complexes involved in their exchange
    • T. Kusch and J.L. Workman: Histone variants and complexes involved in their exchange. Subcell Biochem 41, 91-109 (2007).
    • (2007) Subcell Biochem , vol.41 , pp. 91-109
    • Kusch, T.1    Workman, J.L.2
  • 17
    • 33947684367 scopus 로고    scopus 로고
    • The ins and outs of ATP-dependent chromatin remodeling in budding yeast: Biophysical and proteomic perspectives
    • DOI 10.1016/j.bbaexp.2007.01.013, PII S0167478107000346
    • J.J. van Vugt, M. Ranes, C. Campsteijn, and C. Logie: The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives. Biochim Biophys Acta 1769, 153-171 (2007). (Pubitemid 46497472)
    • (2007) Biochimica et Biophysica Acta - Gene Structure and Expression , vol.1769 , Issue.3 , pp. 153-171
    • Van Vugt, J.J.F.A.1    Ranes, M.2    Campsteijn, C.3    Logie, C.4
  • 18
    • 70349662183 scopus 로고    scopus 로고
    • NuA4 and SWR1-C: Two chromatin-modifying complexes with overlapping functions and components
    • P.Y. Lu, N. Levesque, and M.S. Kobor: NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem Cell Biol 87, 799-815 (2009).
    • (2009) Biochem Cell Biol , vol.87 , pp. 799-815
    • Lu, P.Y.1    Levesque, N.2    Kobor, M.S.3
  • 19
    • 0033028762 scopus 로고    scopus 로고
    • Chromatin and transcription in Saccharomyces cerevisiae
    • DOI 10.1016/S0168-6445(99)00018-2, PII S0168644599000182
    • J. Perez-Martin: Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiol Rev 23, 503- 523 (1999). (Pubitemid 29295370)
    • (1999) FEMS Microbiology Reviews , vol.23 , Issue.4 , pp. 503-523
    • Perez-Martin, J.1
  • 20
    • 42049112367 scopus 로고    scopus 로고
    • Pushing for answers: Is myosin V directly involved in moving mitochondria?
    • DOI 10.1083/jcb.200803064
    • R.R. Valiathan and L.S. Weisman: Pushing for answers: is myosin V directly involved in moving mitochondria? J Cell Biol 181, 15-18 (2008). (Pubitemid 351519759)
    • (2008) Journal of Cell Biology , vol.181 , Issue.1 , pp. 15-18
    • Valiathan, R.R.1    Weisman, L.S.2
  • 21
    • 0019464077 scopus 로고
    • The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity
    • DOI 10.1038/292075a0
    • M. de Zamaroczy, R. Marotta, G. Faugeron-Fonty, R. Goursot, M. Mangin, G. Baldacci, and G. Bernardi: The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature 292, 75-78 (1981). (Pubitemid 11048552)
    • (1981) Nature , vol.292 , Issue.5818 , pp. 75-78
    • De Zamaroczy, M.1    Marotta, R.2    Faugeron-Fonty, G.3
  • 22
    • 0018564086 scopus 로고
    • Putative origins of replication in the mitochondrial genome of yeast
    • DOI 10.1016/0014-5793(79)80580-3
    • M. de Zamaroczy, G. Baldacci, and G. Bernardi: Putative origins of replication in the mitochondrial genome of yeast. FEBS Lett 108, 429-432 (1979). (Pubitemid 10126522)
    • (1979) FEBS Letters , vol.108 , Issue.2 , pp. 429-432
    • De Zamaroczy, M.1    Baldacci, G.2    Bernardi, G.3
  • 23
    • 23644453616 scopus 로고    scopus 로고
    • Lessons from a small, dispensable genome: The mitochondrial genome of yeast
    • DOI 10.1016/j.gene.2005.03.024, PII S0378111905001782
    • G. Bernardi: Lessons from a small, dispensable genome: the mitochondrial genome of yeast. Gene 354, 189-200 (2005). (Pubitemid 41116700)
    • (2005) Gene , vol.354 , Issue.SPEC. ISS. , pp. 189-200
    • Bernardi, G.1
  • 24
    • 46749110071 scopus 로고    scopus 로고
    • Mitochondrial nucleoids undergo remodeling in response to metabolic cues
    • DOI 10.1242/jcs.028605
    • M. Kucej, B. Kucejova, R. Subramanian, X.J. Chen, and R.A. Butow: Mitochondrial nucleoids undergo remodeling in response to metabolic cues. J Cell Sci 121, 1861-1868 (2008). (Pubitemid 351943379)
    • (2008) Journal of Cell Science , vol.121 , Issue.11 , pp. 1861-1868
    • Kucej, M.1    Kucejova, B.2    Subramanian, R.3    Chen, X.J.4    Butow, R.A.5
  • 25
    • 0041765777 scopus 로고    scopus 로고
    • Staying in aerobic shape: How the structural integrity of mitochondria and mitochondrial DNA is maintained
    • DOI 10.1016/S0955-0674(03)00070-X
    • S.V. Scott, A. Cassidy-Stone, S.L. Meeusen, and J. Nunnari: Staying in aerobic shape: how the structural integrity of mitochondria and mitochondrial DNA is maintained. Curr Opin Cell Biol 15, 482-488 (2003). (Pubitemid 36928052)
    • (2003) Current Opinion in Cell Biology , vol.15 , Issue.4 , pp. 482-488
    • Scott, S.V.1    Cassidy-Stone, A.2    Meeusen, S.L.3    Nunnari, J.4
  • 26
    • 33645974004 scopus 로고    scopus 로고
    • Mitochondrial chromosome structure: An insight from analysis of complete yeast genomes
    • J. Nosek, L. Tomaska, M. Bolotin-Fukuhara, and I. Miyakawa: Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Res 6, 356-370 (2006).
    • (2006) FEMS Yeast Res , vol.6 , pp. 356-370
    • Nosek, J.1    Tomaska, L.2    Bolotin-Fukuhara, M.3    Miyakawa, I.4
  • 27
    • 0037009365 scopus 로고    scopus 로고
    • Recombination-dependent mtDNA partitioning: In vivo role of Mhr1p to promote pairing of homologous DNA
    • DOI 10.1093/emboj/cdf466
    • F. Ling and T. Shibata: Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA. Embo J 21, 4730-4740 (2002). (Pubitemid 34984360)
    • (2002) EMBO Journal , vol.21 , Issue.17 , pp. 4730-4740
    • Ling, F.1    Shibata, T.2
  • 28
    • 33745851905 scopus 로고    scopus 로고
    • Toward the complete yeast mitochondrial proteome: Multidimensional separation techniques for mitochondrial proteomics
    • DOI 10.1021/pr050477f
    • J. Reinders, R.P. Zahedi, N. Pfanner, C. Meisinger, and A. Sickmann: Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5, 1543-1554 (2006). (Pubitemid 44036128)
    • (2006) Journal of Proteome Research , vol.5 , Issue.7 , pp. 1543-1554
    • Reinders, J.1    Zahedi, R.P.2    Pfanner, N.3    Meisinger, C.4    Sickmann, A.5
  • 29
    • 76249088524 scopus 로고    scopus 로고
    • Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae
    • S. Merz and B. Westermann: Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol 10, R95 (2009).
    • (2009) Genome Biol , vol.10
    • Merz, S.1    Westermann, B.2
  • 30
    • 27644467457 scopus 로고    scopus 로고
    • Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae
    • DOI 10.1091/mbc.E05-07-0678
    • K. Altmann and B. Westermann: Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 16, 5410-5417 (2005). (Pubitemid 41566849)
    • (2005) Molecular Biology of the Cell , vol.16 , Issue.11 , pp. 5410-5417
    • Altmann, K.1    Westermann, B.2
  • 31
    • 58249142539 scopus 로고    scopus 로고
    • Multiple pathways of mitochondrial-nuclear communication in yeast: Intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation
    • D.K. Woo, T.L. Phang, J.D. Trawick, and R.O. Poyton: Multiple pathways of mitochondrial-nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. Biochim Biophys Acta 1789, 135-145 (2009).
    • (2009) Biochim Biophys Acta , vol.1789 , pp. 135-145
    • Woo, D.K.1    Phang, T.L.2    Trawick, J.D.3    Poyton, R.O.4
  • 32
    • 0035831532 scopus 로고    scopus 로고
    • Effects of anoxia and the mitochondrion on expression of aerobic nuclear COX genes in yeast: Evidence for a signaling pathway from the mitochondrial genome to the nucleus
    • C. Dagsgaard, L.E. Taylor, K.M. O'Brien, and R.O. Poyton: Effects of anoxia and the mitochondrion on expression of aerobic nuclear COX genes in yeast: evidence for a signaling pathway from the mitochondrial genome to the nucleus. J Biol Chem 276, 7593-7601 (2001).
    • (2001) J Biol Chem , vol.276 , pp. 7593-7601
    • Dagsgaard, C.1    Taylor, L.E.2    O'brien, K.M.3    Poyton, R.O.4
  • 33
    • 76749091531 scopus 로고    scopus 로고
    • New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms
    • B. Kadenbach, R. Ramzan, L. Wen, and S. Vogt: New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta 1800, 205-212 (2010).
    • (2010) Biochim Biophys Acta , vol.1800 , pp. 205-212
    • Kadenbach, B.1    Ramzan, R.2    Wen, L.3    Vogt, S.4
  • 34
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport chain
    • DOI 10.1046/j.0022-3042.2002.00744.x
    • Y. Liu, G. Fiskum, and D. Schubert: Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80, 780-787 (2002). (Pubitemid 34809230)
    • (2002) Journal of Neurochemistry , vol.80 , Issue.5 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 35
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: Central role of complex III
    • DOI 10.1074/jbc.M304854200
    • Q. Chen, E.J. Vazquez, S. Moghaddas, C.L. Hoppel, and E.J. Lesnefsky: Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278, 36027-36031 (2003). (Pubitemid 37139922)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.38 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 36
    • 70349769764 scopus 로고    scopus 로고
    • Reactive oxygen species production by mitochondria
    • A.J. Lambert and M.D. Brand: Reactive oxygen species production by mitochondria. Methods Mol Biol 554, 165- 181 (2009).
    • (2009) Methods Mol Biol , vol.554 , pp. 165-181
    • Lambert, A.J.1    Brand, M.D.2
  • 37
    • 2442471606 scopus 로고    scopus 로고
    • Intracellular Copper Transport in Mammals
    • J.R. Prohaska and A.A. Gybina: Intracellular copper transport in mammals. J Nutr 134, 1003-1006 (2004). (Pubitemid 38619931)
    • (2004) Journal of Nutrition , vol.134 , Issue.5 , pp. 1003-1006
    • Prohaska, J.R.1    Gybina, A.A.2
  • 38
    • 18544371009 scopus 로고    scopus 로고
    • Metals, toxicity and oxidative stress
    • DOI 10.2174/0929867053764635
    • M. Valko, H. Morris, and M.T. Cronin: Metals, toxicity and oxidative stress. Curr Med Chem 12, 1161-1208 (2005). (Pubitemid 40655271)
    • (2005) Current Medicinal Chemistry , vol.12 , Issue.10 , pp. 1161-1208
    • Valko, M.1    Morris, H.2    Cronin, M.T.D.3
  • 39
    • 49349100455 scopus 로고    scopus 로고
    • Redox control and oxidative stress in yeast cells
    • E. Herrero, J. Ros, G. Belli, and E. Cabiscol: Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780, 1217-1235 (2008).
    • (2008) Biochim Biophys Acta , vol.1780 , pp. 1217-1235
    • Herrero, E.1    Ros, J.2    Belli, G.3    Cabiscol, E.4
  • 42
    • 76149095625 scopus 로고    scopus 로고
    • Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions
    • C. Moraitis and B.P. Curran: Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions. Yeast 27, 103-114 (2010).
    • (2010) Yeast , vol.27 , pp. 103-114
    • Moraitis, C.1    Curran, B.P.2
  • 43
    • 0035200326 scopus 로고    scopus 로고
    • Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae
    • DOI 10.1128/MCB.21.24.8483-8489.2001
    • J.F. Davidson and R.H. Schiestl: Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 21, 8483-8489 (2001). (Pubitemid 33108607)
    • (2001) Molecular and Cellular Biology , vol.21 , Issue.24 , pp. 8483-8489
    • Davidson, J.F.1    Schiestl, R.H.2
  • 44
    • 41149146615 scopus 로고    scopus 로고
    • Metabolic reconfiguration is a regulated response to oxidative stress
    • C.M. Grant: Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 7, 1 (2008).
    • (2008) J Biol , vol.7 , pp. 1
    • Grant, C.M.1
  • 45
    • 77950676470 scopus 로고    scopus 로고
    • The role of protein quality control in mitochondrial protein homeostasis under oxidative stress
    • T. Bender, C. Leidhold, T. Ruppert, S. Franken, and W. Voos: The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics 10, 1426-1443 (2010).
    • (2010) Proteomics , vol.10 , pp. 1426-1443
    • Bender, T.1    Leidhold, C.2    Ruppert, T.3    Franken, S.4    Voos, W.5
  • 46
    • 20344382273 scopus 로고    scopus 로고
    • Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae
    • DOI 10.1128/MCB.25.12.5196-5204.2005
    • N.A. Doudican, B. Song, G.S. Shadel, and P.W. Doetsch: Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol 25, 5196-5204 (2005). (Pubitemid 40781117)
    • (2005) Molecular and Cellular Biology , vol.25 , Issue.12 , pp. 5196-5204
    • Doudican, N.A.1    Song, B.2    Shadel, G.S.3    Doetsch, P.W.4
  • 47
    • 30344432706 scopus 로고    scopus 로고
    • Role of mitochondrial DNA in toxic responses to oxidative stress
    • DOI 10.1016/j.dnarep.2005.03.002, PII S1568786405000546
    • B. Van Houten, V. Woshner, and J.H. Santos: Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 5, 145-152 (2006). (Pubitemid 43069515)
    • (2006) DNA Repair , vol.5 , Issue.2 , pp. 145-152
    • Van Houten, B.1    Woshner, V.2    Santos, J.H.3
  • 48
    • 16844369889 scopus 로고    scopus 로고
    • Nuclear and mitochondrial DNA repair: Similar pathways?
    • DOI 10.1016/j.mito.2005.02.002, PII S1567724905000334
    • N.B. Larsen, M. Rasmussen, and L.J. Rasmussen: Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5, 89-108 (2005). (Pubitemid 40485769)
    • (2005) Mitochondrion , vol.5 , Issue.2 , pp. 89-108
    • Larsen, N.B.1    Rasmussen, M.2    Rasmussen, L.J.3
  • 49
    • 70149110390 scopus 로고    scopus 로고
    • Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity
    • L. Kalifa, G. Beutner, N. Phadnis, S.S. Sheu, and E.A. Sia: Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst) 8, 1242- 1249 (2009).
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1242-1249
    • Kalifa, L.1    Beutner, G.2    Phadnis, N.3    Sheu, S.S.4    Sia, E.A.5
  • 50
    • 0348140585 scopus 로고    scopus 로고
    • Abasic sites in DNA: Repair and biological consequences in Saccharomyces cerevisiae
    • DOI 10.1016/j.dnarep.2003.10.002
    • S. Boiteux and M. Guillet: Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst) 3, 1-12 (2004). (Pubitemid 38021990)
    • (2004) DNA Repair , vol.3 , Issue.1 , pp. 1-12
    • Boiteux, S.1    Guillet, M.2
  • 51
    • 0035137178 scopus 로고    scopus 로고
    • Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability
    • DOI 10.1128/MCB.21.5.1647-1655.2001
    • R. Vongsamphanh, P.K. Fortier, and D. Ramotar: Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability. Mol Cell Biol 21, 1647-1655 (2001). (Pubitemid 32156384)
    • (2001) Molecular and Cellular Biology , vol.21 , Issue.5 , pp. 1647-1655
    • Vongsamphanh, R.1    Fortier, P.-K.2    Ramotar, D.3
  • 52
    • 33750704608 scopus 로고    scopus 로고
    • Five repair pathways in one context: Chromatin modification during DNA repair
    • DOI 10.1139/O06-075
    • Y. Ataian and J.E. Krebs: Five repair pathways in one context: chromatin modification during DNA repair. Biochem Cell Biol 84, 490-504 (2006). (Pubitemid 44703653)
    • (2006) Biochemistry and Cell Biology , vol.84 , Issue.4 , pp. 490-504
    • Ataian, Y.1    Krebs, J.E.2
  • 53
    • 30344434641 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome
    • DOI 10.1016/j.dnarep.2005.10.003, PII S1568786405002685
    • R. Vongsamphanh, J.R. Wagner, and D. Ramotar: Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome. DNA Repair (Amst) 5, 235-242 (2006). (Pubitemid 43069523)
    • (2006) DNA Repair , vol.5 , Issue.2 , pp. 235-242
    • Vongsamphanh, R.1    Wagner, J.R.2    Ramotar, D.3
  • 54
    • 0035869159 scopus 로고    scopus 로고
    • Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants
    • K.K. Singh, B. Sigala, H.A. Sikder, and C. Schwimmer: Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res 29, 1381-1388 (2001). (Pubitemid 32229466)
    • (2001) Nucleic Acids Research , vol.29 , Issue.6 , pp. 1381-1388
    • Singh, K.K.1    Sigala, B.2    Sikder, H.A.3    Schwimmer, C.4
  • 56
    • 59249088618 scopus 로고    scopus 로고
    • Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress
    • L.M. Griffiths, D. Swartzlander, K.L. Meadows, K.D. Wilkinson, A.H. Corbett, and P.W. Doetsch: Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress. Mol Cell Biol 29, 794-807 (2009).
    • (2009) Mol Cell Biol , vol.29 , pp. 794-807
    • Griffiths, L.M.1    Swartzlander, D.2    Meadows, K.L.3    Wilkinson, K.D.4    Corbett, A.H.5    Doetsch, P.W.6
  • 57
    • 33745236626 scopus 로고    scopus 로고
    • Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA
    • DOI 10.1016/j.dnarep.2006.04.002, PII S1568786406001133
    • N. Phadnis, R. Mehta, N. Meednu, and E.A. Sia: Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA. DNA Repair (Amst) 5, 829-839 (2006). (Pubitemid 43928885)
    • (2006) DNA Repair , vol.5 , Issue.7 , pp. 829-839
    • Phadnis, N.1    Mehta, R.2    Meednu, N.3    Sia, E.A.4
  • 58
    • 70349323112 scopus 로고    scopus 로고
    • Evidence that msh1p plays multiple roles in mitochondrial base excision repair
    • L. Pogorzala, S. Mookerjee, and E.A. Sia: Evidence that msh1p plays multiple roles in mitochondrial base excision repair. Genetics 182, 699-709 (2009).
    • (2009) Genetics , vol.182 , pp. 699-709
    • Pogorzala, L.1    Mookerjee, S.2    Sia, E.A.3
  • 59
    • 6344277040 scopus 로고    scopus 로고
    • Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae: Relationships with transition metals iron and copper
    • DOI 10.1002/yea.1144
    • R.G. Melo, A.C. Leitao, and M. Padula: Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae: relationships with transition metals iron and copper. Yeast 21, 991-1003 (2004). (Pubitemid 39387486)
    • (2004) Yeast , vol.21 , Issue.12 , pp. 991-1003
    • Melo, R.G.M.1    Leitao, A.C.2    Padula, M.3
  • 60
    • 59149096730 scopus 로고    scopus 로고
    • Msh1p counteracts oxidative lesioninduced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae
    • A. Kaniak, P. Dzierzbicki, A.T. Rogowska, E. Malc, M. Fikus, and Z. Ciesla: Msh1p counteracts oxidative lesioninduced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae. DNA Repair (Amst) 8, 318-329 (2009).
    • (2009) DNA Repair (Amst) , vol.8 , pp. 318-329
    • Kaniak, A.1    Dzierzbicki, P.2    Rogowska, A.T.3    Malc, E.4    Fikus, M.5    Ciesla, Z.6
  • 61
    • 67449146847 scopus 로고    scopus 로고
    • Loss of mitochondrial DNA under genotoxic stress conditions in the absence of the yeast DNA helicase Pif1p occurs independently of the DNA helicase Rrm3p
    • X. Cheng, Y. Qin, and A.S. Ivessa: Loss of mitochondrial DNA under genotoxic stress conditions in the absence of the yeast DNA helicase Pif1p occurs independently of the DNA helicase Rrm3p. Mol Genet Genomics 281, 635-645 (2009).
    • (2009) Mol Genet Genomics , vol.281 , pp. 635-645
    • Cheng, X.1    Qin, Y.2    Ivessa, A.S.3
  • 62
    • 63349090059 scopus 로고    scopus 로고
    • Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication
    • A. Hori, M. Yoshida, T. Shibata, and F. Ling: Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication. Nucleic Acids Res 37, 749-761 (2009).
    • (2009) Nucleic Acids Res , vol.37 , pp. 749-761
    • Hori, A.1    Yoshida, M.2    Shibata, T.3    Ling, F.4
  • 64
    • 0036258184 scopus 로고    scopus 로고
    • Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins
    • DOI 10.1128/MCB.22.12.4086-4093.2002
    • T.W. O'Rourke, N.A. Doudican, M.D. Mackereth, P.W. Doetsch, and G.S. Shadel: Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol Cell Biol 22, 4086-4093 (2002). (Pubitemid 34556579)
    • (2002) Molecular and Cellular Biology , vol.22 , Issue.12 , pp. 4086-4093
    • O'Rourke, T.W.1    Doudican, N.A.2    Mackereth, M.D.3    Doetsch, P.W.4    Shadel, G.S.5
  • 66
    • 34548216886 scopus 로고    scopus 로고
    • Cell cycle- and ribonucleotide reductase-driven changesin mtDNA copy number influence mtDNA inheritance without compromising mitochondrial gene expression
    • M.A. Lebedeva and G.S. Shadel: Cell cycle- and ribonucleotide reductase-driven changes in mtDNA copy number influence mtDNA Inheritance without compromising mitochondrial gene expression. Cell Cycle 6, 2048-2057 (2007). (Pubitemid 47327894)
    • (2007) Cell Cycle , vol.6 , Issue.16 , pp. 2048-2057
    • Lebedeva, M.A.1    Shadel, G.S.2
  • 68
    • 13244277441 scopus 로고    scopus 로고
    • Aconitase couples metabolic regulation to mitochondrial DNA maintenance
    • DOI 10.1126/science.1106391
    • X.J. Chen, X. Wang, B.A. Kaufman, and R.A. Butow: Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307, 714-717 (2005). (Pubitemid 40194639)
    • (2005) Science , vol.307 , Issue.5710 , pp. 714-717
    • Xin, J.C.1    Wang, X.2    Kaufman, B.A.3    Butow, R.A.4
  • 69
    • 24344441532 scopus 로고    scopus 로고
    • Yeast aconitase in two locations and two metabolic pathways: Seeing small amounts is believing
    • DOI 10.1091/mbc.E04-11-1028
    • N. Regev-Rudzki, S. Karniely, N.N. Ben-Haim, and O. Pines: Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol Biol Cell 16, 4163-4171 (2005). (Pubitemid 41262886)
    • (2005) Molecular Biology of the Cell , vol.16 , Issue.9 , pp. 4163-4171
    • Regev-Rudzki, N.1    Karniely, S.2    Ben-Haim, N.N.3    Pines, O.4
  • 70
    • 67449084913 scopus 로고    scopus 로고
    • ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae
    • H. Kitagaki, L.A. Cowart, N. Matmati, D. Montefusco, J. Gandy, S.V. de Avalos, S.A. Novgorodov, J. Zheng, L.M. Obeid, and Y.A. Hannun: ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 284, 10818-10830 (2009).
    • (2009) J Biol Chem , vol.284 , pp. 10818-10830
    • Kitagaki, H.1    Cowart, L.A.2    Matmati, N.3    Montefusco, D.4    Gandy, J.5    De Avalos, S.V.6    Novgorodov, S.A.7    Zheng, J.8    Obeid, L.M.9    Hannun, Y.A.10
  • 71
    • 48749096244 scopus 로고    scopus 로고
    • Expression of the rDNA-encoded mitochondrial protein Tar1p is stringently controlled and responds differentially to mitochondrial respiratory demand and dysfunction
    • N.D. Bonawitz, M. Chatenay-Lapointe, C.M. Wearn, and G.S. Shadel: Expression of the rDNA-encoded mitochondrial protein Tar1p is stringently controlled and responds differentially to mitochondrial respiratory demand and dysfunction. Curr Genet 54, 83-94 (2008).
    • (2008) Curr Genet , vol.54 , pp. 83-94
    • Bonawitz, N.D.1    Chatenay-Lapointe, M.2    Wearn, C.M.3    Shadel, G.S.4
  • 72
    • 0017171254 scopus 로고
    • Mutator activity of petite strains of Saccharomyces cerevisiae
    • F. Flury, R.C. von Borstel, and D.H. Williamson: Mutator activity of petite strains of Saccharomyces cerevisiae. Genetics 83, 645-653 (1976).
    • (1976) Genetics , vol.83 , pp. 645-653
    • Flury, F.1    Borstel, R.C.V.2    Williamson, D.H.3
  • 73
    • 0242380642 scopus 로고    scopus 로고
    • Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae
    • DOI 10.1093/nar/gkg446
    • A.K. Rasmussen, A. Chatterjee, L.J. Rasmussen, and K.K. Singh: Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Res 31, 3909-3917 (2003). (Pubitemid 37442270)
    • (2003) Nucleic Acids Research , vol.31 , Issue.14 , pp. 3909-3917
    • Rasmussen, A.K.1    Chatterjee, A.2    Rasmussen, L.J.3    Singh, K.K.4
  • 74
    • 65249132383 scopus 로고    scopus 로고
    • The mismatch repair system promotes DNA polymerase zetadependent translesion synthesis in yeast
    • K. Lehner and S. Jinks-Robertson: The mismatch repair system promotes DNA polymerase zetadependent translesion synthesis in yeast. Proc Natl Acad Sci USA 106, 5749-5754 (2009).
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 5749-5754
    • Lehner, K.1    Jinks-Robertson, S.2
  • 75
    • 67549136242 scopus 로고    scopus 로고
    • Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect
    • J.R. Veatch, M.A. McMurray, Z.W. Nelson, and D.E. Gottschling: Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247-1258 (2009).
    • (2009) Cell , vol.137 , pp. 1247-1258
    • Veatch, J.R.1    McMurray, M.A.2    Nelson, Z.W.3    Gottschling, D.E.4
  • 76
    • 0033565665 scopus 로고    scopus 로고
    • The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins
    • DOI 10.1093/emboj/18.14.3981
    • G. Kispal, P. Csere, C. Prohl, and R. Lill: The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18, 3981-3989 (1999). (Pubitemid 29335851)
    • (1999) EMBO Journal , vol.18 , Issue.14 , pp. 3981-3989
    • Kispal, G.1    Csere, P.2    Prohl, C.3    Lill, R.4
  • 77
    • 0034717132 scopus 로고    scopus 로고
    • Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function
    • DOI 10.1074/jbc.M909502199
    • A. Kaut, H. Lange, K. Diekert, G. Kispal, and R. Lill: Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. J Biol Chem 275, 15955-15961 (2000). (Pubitemid 30366899)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.21 , pp. 15955-15961
    • Kaut, A.1    Lange, H.2    Diekert, K.3    Kispal, G.4    Lill, R.5
  • 78
    • 47249094614 scopus 로고    scopus 로고
    • Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases
    • R. Lill and U. Muhlenhoff: Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77, 669-700 (2008).
    • (2008) Annu Rev Biochem , vol.77 , pp. 669-700
    • Lill, R.1    Muhlenhoff, U.2
  • 79
    • 3142667831 scopus 로고    scopus 로고
    • Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis
    • DOI 10.1074/jbc.M403209200
    • O.S. Chen, R.J. Crisp, M. Valachovic, M. Bard, D.R. Winge, and J. Kaplan: Transcription of the yeast iron regulon does not respond directly to iron but rather to ironsulfur cluster biosynthesis. J Biol Chem 279, 29513-29518 (2004). (Pubitemid 38915831)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.28 , pp. 29513-29518
    • Chen, O.S.1    Crisp, R.J.2    Valachovic, M.3    Bard, M.4    Winge, D.R.5    Kaplan, J.6
  • 81
    • 67849097596 scopus 로고    scopus 로고
    • The interaction of mitochondrial iron with manganese superoxide dismutase
    • A. Naranuntarat, L.T. Jensen, S. Pazicni, J.E. Penner- Hahn, and V.C. Culotta: The interaction of mitochondrial iron with manganese superoxide dismutase. J Biol Chem 284, 22633-22640 (2009).
    • (2009) J Biol Chem , vol.284 , pp. 22633-22640
    • Naranuntarat, A.1    Jensen, L.T.2    Pazicni, S.3    Hahn J.E.P.-4    Culotta, V.C.5
  • 84
    • 0037423223 scopus 로고    scopus 로고
    • Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
    • DOI 10.1016/S0092-8674(03)00075-8
    • A. Chabes, B. Georgieva, V. Domkin, X. Zhao, R. Rothstein, and L. Thelander: Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112, 391-401 (2003). (Pubitemid 36183658)
    • (2003) Cell , vol.112 , Issue.3 , pp. 391-401
    • Chabes, A.1    Georgieva, B.2    Domkin, V.3    Zhao, X.4    Rothstein, R.5    Thelander, L.6
  • 85
    • 33846141121 scopus 로고    scopus 로고
    • Iron-sulfur cluster proteins: Electron transfer and beyond
    • K. Brzoska, S. Meczynska, and M. Kruszewski: Ironsulfur cluster proteins: electron transfer and beyond. Acta Biochim Pol 53, 685-691 (2006). (Pubitemid 46090118)
    • (2006) Acta Biochimica Polonica , vol.53 , Issue.4 , pp. 685-691
    • Brzoska, K.1    Meczynska, S.2    Kruszewski, M.3
  • 86
    • 0032960862 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast
    • I. Alseth, L. Eide, M. Pirovano, T. Rognes, E. Seeberg, and M. Bjoras: The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol 19, 3779-3787 (1999). (Pubitemid 29193837)
    • (1999) Molecular and Cellular Biology , vol.19 , Issue.5 , pp. 3779-3787
    • Alseth, I.1    Eide, L.2    Pirovano, M.3    Rognes, T.4    Seeberg, E.5    Bjoras, M.6
  • 87
    • 0141905895 scopus 로고    scopus 로고
    • Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: Implications for biological function
    • DOI 10.1093/nar/gkg749
    • K.L. Meadows, B. Song, and P.W. Doetsch: Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: implications for biological function. Nucleic Acids Res 31, 5560-5567 (2003). (Pubitemid 37441926)
    • (2003) Nucleic Acids Research , vol.31 , Issue.19 , pp. 5560-5567
    • Meadows, K.L.1    Song, B.2    Doetsch, P.W.3
  • 88
    • 33748428875 scopus 로고    scopus 로고
    • The DNA Repair Helicases XPD and FancJ Have Essential Iron-Sulfur Domains
    • DOI 10.1016/j.molcel.2006.07.019, PII S1097276506005168
    • J. Rudolf, V. Makrantoni, W.J. Ingledew, M.J. Stark, and M.F. White: The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell 23, 801-808 (2006). (Pubitemid 44344515)
    • (2006) Molecular Cell , vol.23 , Issue.6 , pp. 801-808
    • Rudolf, J.1    Makrantoni, V.2    Ingledew, W.J.3    Stark, M.J.R.4    White, M.F.5
  • 89
    • 34548492954 scopus 로고    scopus 로고
    • An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis
    • DOI 10.1038/nsmb1288, PII NSMB1288
    • S. Klinge, J. Hirst, J.D. Maman, T. Krude, and L. Pellegrini: An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat Struct Mol Biol 14, 875-877 (2007). (Pubitemid 47373835)
    • (2007) Nature Structural and Molecular Biology , vol.14 , Issue.9 , pp. 875-877
    • Klinge, S.1    Hirst, J.2    Maman, J.D.3    Krude, T.4    Pellegrini, L.5
  • 91
    • 0034922788 scopus 로고    scopus 로고
    • Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae
    • DOI 10.1007/s004380100507
    • L. Gellon, R. Barbey, P. Auffret van der Kemp, D. Thomas, and S. Boiteux: Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Mol Genet Genomics 265, 1087-1096 (2001). (Pubitemid 32702182)
    • (2001) Molecular Genetics and Genomics , vol.265 , Issue.6 , pp. 1087-1096
    • Gellon, L.1    Barbey, R.2    Van Der Kemp, P.A.3    Thomas, D.4    Boiteux, S.5
  • 92
    • 0037119357 scopus 로고    scopus 로고
    • Ntg2p, a Saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein Mlh1p, Identification of a Mlh1p binding motif
    • L. Gellon, M. Werner, and S. Boiteux: Ntg2p, a Saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein Mlh1p. Identification of a Mlh1p binding motif. J Biol Chem 277, 29963-29972 (2002).
    • (2002) J Biol Chem , vol.277 , pp. 29963-29972
    • Gellon, L.1    Werner, M.2    Boiteux, S.3
  • 94
    • 10044245884 scopus 로고    scopus 로고
    • Base excision repair in nucleosomes lacking histone tails
    • DOI 10.1016/j.dnarep.2004.09.011, PII S1568786404002915
    • B.C. Beard, J.J. Stevenson, S.H. Wilson, and M.J. Smerdon: Base excision repair in nucleosomes lacking histone tails. DNA Repair (Amst) 4, 203-209 (2005). (Pubitemid 39601408)
    • (2005) DNA Repair , vol.4 , Issue.2 , pp. 203-209
    • Beard, B.C.1    Stevenson, J.J.2    Wilson, S.H.3    Smerdon, M.J.4
  • 95
    • 0036184090 scopus 로고    scopus 로고
    • Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription
    • DOI 10.1016/S1097-2765(02)00453-7
    • M. Tini, A. Benecke, S.J. Um, J. Torchia, R.M. Evans, and P. Chambon: Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9, 265-277 (2002). (Pubitemid 34195553)
    • (2002) Molecular Cell , vol.9 , Issue.2 , pp. 265-277
    • Tini, M.1    Benecke, A.2    Um, S.-J.3    Torchia, J.4    Evans, R.M.5    Chambon, P.6
  • 96
    • 37749030970 scopus 로고    scopus 로고
    • The contribution of the budding yeast histone H2A C-terminal tail to DNA damage responses
    • A.L. Chambers and J.A. Downs: The contribution of the budding yeast histone H2A C-terminal tail to DNAdamage responses. Biochem Soc Trans 35, 1519-1524 (2007).
    • (2007) Biochem Soc Trans , vol.35 , pp. 1519-1524
    • Chambers, A.L.1    Downs, J.A.2
  • 98
    • 34248161049 scopus 로고    scopus 로고
    • Contribution of the serine 129 of historie H2A to chromatin structure
    • DOI 10.1128/MCB.02077-06
    • M. Fink, D. Imholz, and F. Thoma: Contribution of the serine 129 of histone H2A to chromatin structure. Mol Cell Biol 27, 3589-3600 (2007). (Pubitemid 46726170)
    • (2007) Molecular and Cellular Biology , vol.27 , Issue.10 , pp. 3589-3600
    • Fink, M.1    Imholz, D.2    Thoma, F.3
  • 99
    • 0034700511 scopus 로고    scopus 로고
    • A role for Saccharomyces cerevisiae histone H2A in DNA repair
    • DOI 10.1038/35050000
    • J.A. Downs, N.F. Lowndes, and S.P. Jackson: A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001-1004 (2000). (Pubitemid 32101649)
    • (2000) Nature , vol.408 , Issue.6815 , pp. 1001-1004
    • Downs, J.A.1    Lowndes, N.F.2    Jackson, S.P.3
  • 100
    • 84860284646 scopus 로고    scopus 로고
    • Diverse roles for histone H2A modifications in DNA damage response pathways in yeast
    • J.D. Moore, O. Yazgan, Y. Ataian, and J.E. Krebs: Diverse roles for histone H2A modifications in DNA damage response pathways in yeast. Genetics genetics.106.063792 (2006).
    • (2006) Genetics Genetics , vol.106 , pp. 063792
    • Moore, J.D.1    Yazgan, O.2    Ataian, Y.3    Krebs, J.E.4
  • 101
    • 19544381129 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair
    • DOI 10.1534/genetics.104.038570
    • A.C. Harvey, S.P. Jackson, and J.A. Downs: Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair. Genetics 170, 543-553 (2005). (Pubitemid 40980658)
    • (2005) Genetics , vol.170 , Issue.2 , pp. 543-553
    • Harvey, A.C.1    Jackson, S.P.2    Downs, J.A.3
  • 102
    • 34547410267 scopus 로고    scopus 로고
    • Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae
    • DOI 10.1073/pnas.0701634104
    • N. Erjavec and T. Nystrom: Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104, 10877-10881 (2007). (Pubitemid 47175194)
    • (2007) Proceedings of the National Academy of Sciences of the United States of America , vol.104 , Issue.26 , pp. 10877-10881
    • Erjavec, N.1    Nystrom, T.2
  • 103
    • 34948846000 scopus 로고    scopus 로고
    • Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p
    • DOI 10.1101/gad.439307
    • N. Erjavec, L. Larsson, J. Grantham, and T. Nystrom: Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21, 2410-2421 (2007). (Pubitemid 47529371)
    • (2007) Genes and Development , vol.21 , Issue.19 , pp. 2410-2421
    • Erjavec, N.1    Larsson, L.2    Grantham, J.3    Nystrom, T.4
  • 104
    • 77951938392 scopus 로고    scopus 로고
    • Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing
    • I. Orlandi, M. Bettiga, L. Alberghina, T. Nystrom, and M. Vai: Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochim Biophys Acta 1803, 630-638 (2010).
    • (2010) Biochim Biophys Acta , vol.1803 , pp. 630-638
    • Orlandi, I.1    Bettiga, M.2    Alberghina, L.3    Nystrom, T.4    Vai, M.5
  • 105
    • 0036743518 scopus 로고    scopus 로고
    • A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae
    • C.Y. Lai, E. Jaruga, C. Borghouts, and S.M. Jazwinski: A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162, 73-87 (2002).
    • (2002) Genetics , vol.162 , pp. 73-87
    • Lai, C.Y.1    Jaruga, E.2    Borghouts, C.3    Jazwinski, S.M.4
  • 107
    • 75749112937 scopus 로고    scopus 로고
    • Discovery of the mitotic selective chromatid segregation phenomenon and its implications for vertebrate development
    • A. Armakolas, M. Koutsilieris, and A.J. Klar: Discovery of the mitotic selective chromatid segregation phenomenon and its implications for vertebrate development. Curr Opin Cell Biol 22, 81-87 (2010).
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 81-87
    • Armakolas, A.1    Koutsilieris, M.2    Klar, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.