메뉴 건너뛰기




Volumn 27, Issue 2, 2010, Pages 103-114

Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions

Author keywords

Ascorbic acid; Heat shock response; Hydrogen peroxide; Saccharomyces cerevisiae; Thermosensitivity; Thermotolerance

Indexed keywords

ASCORBIC ACID; HYDROGEN PEROXIDE; LIPID;

EID: 76149095625     PISSN: 0749503X     EISSN: 10970061     Source Type: Journal    
DOI: 10.1002/yea.1735     Document Type: Article
Times cited : (2)

References (35)
  • 1
    • 0037442768 scopus 로고    scopus 로고
    • Redox regulation of mammalian heat-shock factor 1 is essential for Hsp gene activation and protection from stress
    • Ahn SG, Thiele DJ. 2003. Redox regulation of mammalian heat-shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17(4): 516-528.
    • (2003) Genes Dev , vol.17 , Issue.4 , pp. 516-528
    • Ahn, S.G.1    Thiele, D.J.2
  • 2
    • 57349135602 scopus 로고    scopus 로고
    • Post-transcriptional regulation of HSP70 expression following oxidative stress in SH-SY5Y cells: The potential involvement of the RNA-binding protein HuR
    • Amadio M, Scapagnini G, Laforenza U, et al. 2008. Post-transcriptional regulation of HSP70 expression following oxidative stress in SH-SY5Y cells: the potential involvement of the RNA-binding protein HuR. Curr Pharm Des 2008; 14(26): 2651-2658.
    • (2008) Curr Pharm Des , vol.14 , Issue.26 , pp. 2651-2658
    • Amadio, M.1    Scapagnini, G.2    Laforenza, U.3
  • 3
    • 18844464598 scopus 로고    scopus 로고
    • Role of ascorbate in oxidative protein folding
    • Bánhegyi G, Csala M, Szarka A, et al. 2003. Role of ascorbate in oxidative protein folding. Biofactors 17(1-4): 37-46.
    • (2003) Biofactors , vol.17 , Issue.1-4 , pp. 37-46
    • Bánhegyi, G.1    Csala, M.2    Szarka, A.3
  • 4
    • 0035968318 scopus 로고    scopus 로고
    • Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals
    • Benaroudj N, Lee DH, Goldberg AL. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276(26): 24261-24267.
    • (2001) J Biol Chem , vol.276 , Issue.26 , pp. 24261-24267
    • Benaroudj, N.1    Lee, D.H.2    Goldberg, A.L.3
  • 5
    • 48449087215 scopus 로고    scopus 로고
    • Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: Role of vitagenes
    • Calabrese V, Calafato S, Puleo E, et al. 2008. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: role of vitagenes. Clin Dermatol 26(4): 358-363.
    • (2008) Clin Dermatol , vol.26 , Issue.4 , pp. 358-363
    • Calabrese, V.1    Calafato, S.2    Puleo, E.3
  • 6
    • 33947601659 scopus 로고    scopus 로고
    • Redox regulation of cellular stress response in aging and neurodegenerative disorders: Role of vitagenes
    • Calabrese V, Guagliano E, Sapienza M, et al. 2007. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32(4-5): 757-773.
    • (2007) Neurochem Res , vol.32 , Issue.4-5 , pp. 757-773
    • Calabrese, V.1    Guagliano, E.2    Sapienza, M.3
  • 7
    • 0030798256 scopus 로고    scopus 로고
    • Alterations in cellular lipids may be responsible for the transient nature of the yeast heat-shock response
    • Chatterjee MT, Khalawan SA, Curran BPG. 1997. Alterations in cellular lipids may be responsible for the transient nature of the yeast heat-shock response. Microbiology 143: 3063-3068.
    • (1997) Microbiology , vol.143 , pp. 3063-3068
    • Chatterjee, M.T.1    Khalawan, S.A.2    Curran, B.P.G.3
  • 8
    • 0037144396 scopus 로고    scopus 로고
    • Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes
    • Dirmeier R, O'Brien KM, Engle M, et al. 2002. Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem 277(38): 34773-34784.
    • (2002) J Biol Chem , vol.277 , Issue.38 , pp. 34773-34784
    • Dirmeier, R.1    O'Brien, K.M.2    Engle, M.3
  • 9
    • 33845925240 scopus 로고    scopus 로고
    • Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response
    • Eastmond DL, Nelson HC. 2006. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 281(43): 32909-32921.
    • (2006) J Biol Chem , vol.281 , Issue.43 , pp. 32909-32921
    • Eastmond, D.L.1    Nelson, H.C.2
  • 10
    • 33748132549 scopus 로고    scopus 로고
    • Redox regulatory mechanisms in cellular stress responses
    • Fedoroff N. 2006. Redox regulatory mechanisms in cellular stress responses. Ann Bot (Lond) 98(2): 289-300.
    • (2006) Ann Bot (Lond) , vol.98 , Issue.2 , pp. 289-300
    • Fedoroff, N.1
  • 11
    • 33646419773 scopus 로고    scopus 로고
    • Vitamin E isoformspecific inhibition of the exercise-induced heat shock protein 72 expression in humans
    • Fischer CP, Hiscock NJ, Basu S, et al. 2006. Vitamin E isoformspecific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol 100(5): 1679-1687.
    • (2006) J Appl Physiol , vol.100 , Issue.5 , pp. 1679-1687
    • Fischer, C.P.1    Hiscock, N.J.2    Basu, S.3
  • 12
    • 33644843117 scopus 로고    scopus 로고
    • A stress regulatory network for coordinated activation of proteasome expression mediated by yeast heat shock transcription factor
    • Hahn JS, Neef DW, Thiele DJ. 2006. A stress regulatory network for coordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 60(1): 240-251.
    • (2006) Mol Microbiol , vol.60 , Issue.1 , pp. 240-251
    • Hahn, J.S.1    Neef, D.W.2    Thiele, D.J.3
  • 14
    • 34249845676 scopus 로고    scopus 로고
    • Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements
    • Hashikawa N, Yamamoto N, Sakurai H. 2007. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. J Biol Chem 282(14): 10333-10340.
    • (2007) J Biol Chem , vol.282 , Issue.14 , pp. 10333-10340
    • Hashikawa, N.1    Yamamoto, N.2    Sakurai, H.3
  • 15
    • 60249101468 scopus 로고    scopus 로고
    • Early sensing and gene expression profiling under a low dose of cadmium exposure
    • Hsiao CJ, Stapleton SR. 2009. Early sensing and gene expression profiling under a low dose of cadmium exposure. Biochimie 91(3): 329-343.
    • (2009) Biochimie , vol.91 , Issue.3 , pp. 329-343
    • Hsiao, C.J.1    Stapleton, S.R.2
  • 16
    • 0028597439 scopus 로고
    • Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress
    • Jamieson DJ, Rivers SL, Stephen DWS. 1994. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140(12): 3277-3283.
    • (1994) Microbiology , vol.140 , Issue.12 , pp. 3277-3283
    • Jamieson, D.J.1    Rivers, S.L.2    Stephen, D.W.S.3
  • 17
    • 0034808330 scopus 로고    scopus 로고
    • Activation of heat-shock factor 1 by pyrrolidine dithiocarbanate is mediated by its activities as a pro-oxidant and thiol modulator
    • Kim SH, Han SI, Oh SY, et al. 2001. Activation of heat-shock factor 1 by pyrrolidine dithiocarbanate is mediated by its activities as a pro-oxidant and thiol modulator. Biochem Biophys Res Commun 281(2): 367-372.
    • (2001) Biochem Biophys Res Commun , vol.281 , Issue.2 , pp. 367-372
    • Kim, S.H.1    Han, S.I.2    Oh, S.Y.3
  • 18
    • 0036135461 scopus 로고    scopus 로고
    • Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: Functional roles of Rox1 and other factors in mediating the anoxic response
    • Kwast KE, Lai L-C, Menda N, et al. 2002. Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacterol 184(1): 250-265.
    • (2002) J Bacterol , vol.184 , Issue.1 , pp. 250-265
    • Kwast, K.E.1    Lai, L.-C.2    Menda, N.3
  • 19
    • 33748852396 scopus 로고    scopus 로고
    • Metabolicstate-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae
    • Lai LC, Kosorukoff AL, Burke PV, Kwast KE. 2006. Metabolicstate-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. Eukaryot Cell 5(9): 1468-1489.
    • (2006) Eukaryot Cell , vol.5 , Issue.9 , pp. 1468-1489
    • Lai, L.C.1    Kosorukoff, A.L.2    Burke, P.V.3    Kwast, K.E.4
  • 20
    • 0034108630 scopus 로고    scopus 로고
    • The yeast heatshock transcription factor changes conformation in response to superoxide and temperature
    • Lee S, Carlson T, Christian N, et al. 2000. The yeast heatshock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 11(5): 1753-1764.
    • (2000) Mol Biol Cell , vol.11 , Issue.5 , pp. 1753-1764
    • Lee, S.1    Carlson, T.2    Christian, N.3
  • 21
    • 0842346112 scopus 로고    scopus 로고
    • Effect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white Leghorn chickens
    • Mahmoud KZ, Edens FW, Eisen EJ, Havenstein GB. 2003. Effect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white Leghorn chickens. Comp Biochem Physiol C Toxicol Pharmacol 136(4): 329-335.
    • (2003) Comp Biochem Physiol C Toxicol Pharmacol , vol.136 , Issue.4 , pp. 329-335
    • Mahmoud, K.Z.1    Edens, F.W.2    Eisen, E.J.3    Havenstein, G.B.4
  • 22
    • 34548247187 scopus 로고    scopus 로고
    • Can the different heat shock response thresholds in fermenting and respiring yeast cells be attributed to their differential redox states?
    • Moraitis C, Curran BPG. 2007. Can the different heat shock response thresholds in fermenting and respiring yeast cells be attributed to their differential redox states? Yeast 24: 653-666.
    • (2007) Yeast , vol.24 , pp. 653-666
    • Moraitis, C.1    Curran, B.P.G.2
  • 23
    • 1842536834 scopus 로고    scopus 로고
    • Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae
    • Moraitis C, Curran BPG. 2004. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 21: 313-323.
    • (2004) Yeast , vol.21 , pp. 313-323
    • Moraitis, C.1    Curran, B.P.G.2
  • 24
    • 0033596678 scopus 로고    scopus 로고
    • Reactive oxygen species play an important role in the activation of heat-shock factor 1 in ischemic-reperfused heart
    • Nishizawa J, Nakai A, Matsuda K, et al. 1999. Reactive oxygen species play an important role in the activation of heat-shock factor 1 in ischemic-reperfused heart. Circulation 99: 934-941.
    • (1999) Circulation , vol.99 , pp. 934-941
    • Nishizawa, J.1    Nakai, A.2    Matsuda, K.3
  • 25
    • 0036076135 scopus 로고    scopus 로고
    • Redox signalling of cardiac HSF1 DNA binding
    • Paroo Z, Meredith MJ, Locke M, et al. 2002. Redox signalling of cardiac HSF1 DNA binding. AJP Cell Phys 283(2): C404-411.
    • (2002) AJP Cell Phys , vol.283 , Issue.2
    • Paroo, Z.1    Meredith, M.J.2    Locke, M.3
  • 27
    • 29944434766 scopus 로고    scopus 로고
    • Pro-oxidative vs. antioxidative properties of ascorbic acid in chromium(VI)-induced damage: An in vivo and in vitro approach
    • Poljsak B, Gazdag Z, Jenko-Brinovec S, et al. 2005. Pro-oxidative vs. antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. J Appl Toxicol 25(6): 535-548.
    • (2005) J Appl Toxicol , vol.25 , Issue.6 , pp. 535-548
    • Poljsak, B.1    Gazdag, Z.2    Jenko-Brinovec, S.3
  • 28
    • 33846144413 scopus 로고    scopus 로고
    • Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress
    • Rodriquez-Vargas S, Sanchez-Garcia A, Martinez-Rivas JM, et al. 2007. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73(1): 110-116.
    • (2007) Appl Environ Microbiol , vol.73 , Issue.1 , pp. 110-116
    • Rodriquez-Vargas, S.1    Sanchez-Garcia, A.2    Martinez-Rivas, J.M.3
  • 29
    • 0030781092 scopus 로고    scopus 로고
    • Modulating factors of radical intensity and cytotoxic activity of ascorbate
    • Sakagami H, Satoh K. 1997. Modulating factors of radical intensity and cytotoxic activity of ascorbate. Anticancer Res 17(5A): 3513-3520.
    • (1997) Anticancer Res , vol.17 , Issue.5 A , pp. 3513-3520
    • Sakagami, H.1    Satoh, K.2
  • 30
    • 0023427519 scopus 로고
    • Purification and characterization of a heat-shock element binding protein from yeast
    • Sorger PK, Pelham HR. 1987. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J 6: 3035-3041.
    • (1987) EMBO J , vol.6 , pp. 3035-3041
    • Sorger, P.K.1    Pelham, H.R.2
  • 31
    • 0028348777 scopus 로고
    • Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically
    • Steels EL, Learmonth RP, Watson K. 1994. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140(3): 569-576.
    • (1994) Microbiology , vol.140 , Issue.3 , pp. 569-576
    • Steels, E.L.1    Learmonth, R.P.2    Watson, K.3
  • 32
    • 0034685892 scopus 로고    scopus 로고
    • The Yap1p-dependent induction of glutathione synthesis in the heat-shock response of Saccharomyces cerevisiae
    • Sugiyama K, Izawa S, Inoue Y. 2000. The Yap1p-dependent induction of glutathione synthesis in the heat-shock response of Saccharomyces cerevisiae. J Biol Chem 2000: 275(20): 15535-15540.
    • (2000) J Biol Chem , vol.275 , Issue.20 , pp. 15535-15540
    • Sugiyama, K.1    Izawa, S.2    Inoue, Y.3
  • 33
    • 0242380364 scopus 로고    scopus 로고
    • Acquisition of heat-shock tolerance by regulation of intracellular redox states
    • Ueom J, Kwon S, Kim S, et al. 2003. Acquisition of heat-shock tolerance by regulation of intracellular redox states. Biochem Biophys Acta 1642(1-2): 9-16.
    • (2003) Biochem Biophys Acta , vol.1642 , Issue.1-2 , pp. 9-16
    • Ueom, J.1    Kwon, S.2    Kim, S.3
  • 35
    • 34547901379 scopus 로고    scopus 로고
    • Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response
    • Yamamoto A, Ueda J, Yamamoto N, et al. 2007. Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell 6(8): 1373-1379.
    • (2007) Eukaryot Cell , vol.6 , Issue.8 , pp. 1373-1379
    • Yamamoto, A.1    Ueda, J.2    Yamamoto, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.