-
2
-
-
67649841563
-
Autosomal dominant polycystic kidney disease: the last 3 years
-
Torres V.E., Harris P.C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 2009, 76:149-168.
-
(2009)
Kidney Int.
, vol.76
, pp. 149-168
-
-
Torres, V.E.1
Harris, P.C.2
-
3
-
-
67049114683
-
Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease
-
Ecder T., Schrier R.W. Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease. Nat. Rev. Nephrol. 2009, 5:221-228.
-
(2009)
Nat. Rev. Nephrol.
, vol.5
, pp. 221-228
-
-
Ecder, T.1
Schrier, R.W.2
-
4
-
-
79954429542
-
Diagnosis and management of childhood polycystic kidney disease
-
Sweeney W.E., Avner E.D. Diagnosis and management of childhood polycystic kidney disease. Pediatr. Nephrol. 2011, 26:675-692.
-
(2011)
Pediatr. Nephrol.
, vol.26
, pp. 675-692
-
-
Sweeney, W.E.1
Avner, E.D.2
-
5
-
-
33847611591
-
Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease
-
Menezes L.F., Onuchic L.F. Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease. Braz. J. Med. Biol. Res. 2006, 39:1537-1548.
-
(2006)
Braz. J. Med. Biol. Res.
, vol.39
, pp. 1537-1548
-
-
Menezes, L.F.1
Onuchic, L.F.2
-
6
-
-
58149504281
-
Nephronophthisis: disease mechanisms of a ciliopathy
-
Hildebrandt F., et al. Nephronophthisis: disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol. 2009, 20:23-35.
-
(2009)
J. Am. Soc. Nephrol.
, vol.20
, pp. 23-35
-
-
Hildebrandt, F.1
-
7
-
-
77249163235
-
Treatment strategies and clinical trial design in ADPKD
-
Torres V.E. Treatment strategies and clinical trial design in ADPKD. Adv. Chronic Kidney Dis. 2010, 17:190-204.
-
(2010)
Adv. Chronic Kidney Dis.
, vol.17
, pp. 190-204
-
-
Torres, V.E.1
-
8
-
-
63849273195
-
Advances in the pathogenesis and treatment of polycystic kidney disease
-
Patel V., et al. Advances in the pathogenesis and treatment of polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 2009, 18:99-106.
-
(2009)
Curr. Opin. Nephrol. Hypertens.
, vol.18
, pp. 99-106
-
-
Patel, V.1
-
9
-
-
78649910328
-
Mechanisms of nephronophthisis and related ciliopathies
-
Hurd T.W., Hildebrandt F. Mechanisms of nephronophthisis and related ciliopathies. Nephron. Exp. Nephrol. 2011, 118:e9-e14.
-
(2011)
Nephron. Exp. Nephrol.
, vol.118
-
-
Hurd, T.W.1
Hildebrandt, F.2
-
11
-
-
76649096673
-
The primary cilium at a glance
-
Satir P., et al. The primary cilium at a glance. J. Cell Sci. 2011, 123:499-503.
-
(2011)
J. Cell Sci.
, vol.123
, pp. 499-503
-
-
Satir, P.1
-
12
-
-
77951101203
-
The primary cilium: a signalling centre during vertebrate development
-
Goetz S.C., Anderson K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 2010, 11:331-344.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 331-344
-
-
Goetz, S.C.1
Anderson, K.V.2
-
13
-
-
79960644241
-
Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms
-
Gascue C., et al. Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms. Pediatr. Nephrol. 2011, 26:1181-1195.
-
(2011)
Pediatr. Nephrol.
, vol.26
, pp. 1181-1195
-
-
Gascue, C.1
-
14
-
-
77249103612
-
Molecular advances in autosomal dominant polycystic kidney disease
-
Gallagher A.R., et al. Molecular advances in autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis. 2010, 17:118-130.
-
(2010)
Adv. Chronic Kidney Dis.
, vol.17
, pp. 118-130
-
-
Gallagher, A.R.1
-
15
-
-
0037019017
-
Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease
-
Pazour G.J., et al. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 2002, 12:R378-R380.
-
(2002)
Curr. Biol.
, vol.12
-
-
Pazour, G.J.1
-
16
-
-
0036785149
-
The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia
-
Yoder B.K., et al. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 2002, 13:2508-2516.
-
(2002)
J. Am. Soc. Nephrol.
, vol.13
, pp. 2508-2516
-
-
Yoder, B.K.1
-
17
-
-
10744220950
-
Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia
-
Ward C.J., et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum. Mol. Genet. 2003, 12:2703-2710.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 2703-2710
-
-
Ward, C.J.1
-
18
-
-
28844460656
-
Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease?
-
Hildebrandt F., Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease?. Nat. Rev. Genet. 2005, 6:928-940.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 928-940
-
-
Hildebrandt, F.1
Otto, E.2
-
19
-
-
0037884961
-
Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease
-
Lin F., et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:5286-5291.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 5286-5291
-
-
Lin, F.1
-
20
-
-
0034735526
-
Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella
-
Pazour G.J., et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 2000, 151:709-718.
-
(2000)
J. Cell Biol.
, vol.151
, pp. 709-718
-
-
Pazour, G.J.1
-
21
-
-
33749235323
-
Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease
-
Smith L.A., et al. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J. Am. Soc. Nephrol. 2006, 17:2821-2831.
-
(2006)
J. Am. Soc. Nephrol.
, vol.17
, pp. 2821-2831
-
-
Smith, L.A.1
-
22
-
-
0035498717
-
Bending the MDCK cell primary cilium increases intracellular calcium
-
Praetorius H.A., Spring K.R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 2001, 184:71-79.
-
(2001)
J. Membr. Biol.
, vol.184
, pp. 71-79
-
-
Praetorius, H.A.1
Spring, K.R.2
-
23
-
-
0037317302
-
Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells
-
Nauli S.M., et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 2003, 33:129-137.
-
(2003)
Nat. Genet.
, vol.33
, pp. 129-137
-
-
Nauli, S.M.1
-
24
-
-
20944435539
-
Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways
-
Simons M., et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 2005, 37:537-543.
-
(2005)
Nat. Genet.
, vol.37
, pp. 537-543
-
-
Simons, M.1
-
25
-
-
27144460671
-
Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates
-
Ross A.J., et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 2005, 37:1135-1140.
-
(2005)
Nat. Genet.
, vol.37
, pp. 1135-1140
-
-
Ross, A.J.1
-
26
-
-
41349107244
-
THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia
-
Tran P.V., et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat. Genet. 2008, 40:403-410.
-
(2008)
Nat. Genet.
, vol.40
, pp. 403-410
-
-
Tran, P.V.1
-
27
-
-
58149333235
-
The primary cilium at the crossroads of mammalian hedgehog signaling
-
Wong S.Y., Reiter J.F. The primary cilium at the crossroads of mammalian hedgehog signaling. Curr. Top. Dev. Biol. 2008, 85:225-260.
-
(2008)
Curr. Top. Dev. Biol.
, vol.85
, pp. 225-260
-
-
Wong, S.Y.1
Reiter, J.F.2
-
28
-
-
58149343374
-
The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair
-
Christensen S.T., et al. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr. Top. Dev. Biol. 2008, 85:261-301.
-
(2008)
Curr. Top. Dev. Biol.
, vol.85
, pp. 261-301
-
-
Christensen, S.T.1
-
29
-
-
57149087523
-
Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors
-
Masyuk A.I., et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295:G725-G734.
-
(2008)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.295
-
-
Masyuk, A.I.1
-
30
-
-
78149259013
-
Primary cilia regulate mTORC1 activity and cell size through Lkb1
-
Boehlke C., et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 2010, 12:1115-1122.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1115-1122
-
-
Boehlke, C.1
-
31
-
-
18744380752
-
Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease
-
Tao Y., et al. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol. 2005, 16:46-51.
-
(2005)
J. Am. Soc. Nephrol.
, vol.16
, pp. 46-51
-
-
Tao, Y.1
-
32
-
-
33644859253
-
Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD)
-
Wahl P.R., et al. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant. 2006, 21:598-604.
-
(2006)
Nephrol. Dial. Transplant.
, vol.21
, pp. 598-604
-
-
Wahl, P.R.1
-
33
-
-
0028051871
-
Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease - a contiguous gene syndrome
-
Brook-Carter P.T., et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease - a contiguous gene syndrome. Nat. Genet. 1994, 8:328-332.
-
(1994)
Nat. Genet.
, vol.8
, pp. 328-332
-
-
Brook-Carter, P.T.1
-
34
-
-
66149098514
-
Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis
-
Bonnet C.S., et al. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum. Mol. Genet. 2009, 18:2166-2176.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 2166-2176
-
-
Bonnet, C.S.1
-
35
-
-
31544443860
-
TSC2, a key player in tumor suppression and cystic kidney disease
-
Cai S.L., Walker C.L. TSC2, a key player in tumor suppression and cystic kidney disease. Nephrol. Ther. 2006, 2(Suppl. 2):S119-S122.
-
(2006)
Nephrol. Ther.
, vol.2
, Issue.SUPPL. 2
-
-
Cai, S.L.1
Walker, C.L.2
-
36
-
-
0035019467
-
Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene
-
Kleymenova E., et al. Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene. Mol. Cell 2001, 7:823-832.
-
(2001)
Mol. Cell
, vol.7
, pp. 823-832
-
-
Kleymenova, E.1
-
37
-
-
57649243069
-
The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway
-
Hartman T.R., et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum. Mol. Genet. 2009, 18:151-163.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 151-163
-
-
Hartman, T.R.1
-
38
-
-
79959342471
-
Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level?
-
Canaud G., et al. Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level?. Am. J. Transplant. 2010, 10:1701-1706.
-
(2010)
Am. J. Transplant.
, vol.10
, pp. 1701-1706
-
-
Canaud, G.1
-
39
-
-
33645769011
-
The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease
-
Shillingford J.M., et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:5466-5471.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 5466-5471
-
-
Shillingford, J.M.1
-
40
-
-
77957595691
-
Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease
-
Zafar I., et al. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int. 2010, 78:754-761.
-
(2010)
Kidney Int.
, vol.78
, pp. 754-761
-
-
Zafar, I.1
-
41
-
-
67649872366
-
Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis
-
Gattone V.H., IInd, et al. Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney Int. 2009, 76:178-182.
-
(2009)
Kidney Int.
, vol.76
, pp. 178-182
-
-
Gattone IInd, V.H.1
-
42
-
-
77954488392
-
Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models
-
Natoli T.A., et al. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat. Med. 2010, 16:788-792.
-
(2010)
Nat. Med.
, vol.16
, pp. 788-792
-
-
Natoli, T.A.1
-
43
-
-
77949528561
-
Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR
-
Dere R., et al. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS ONE 2010, 5:e9239.
-
(2010)
PLoS ONE
, vol.5
-
-
Dere, R.1
-
44
-
-
77957847881
-
Failure to ubiquitinate c-Met leads to hyperactivation of mTOR signaling in a mouse model of autosomal dominant polycystic kidney disease
-
Qin S., et al. Failure to ubiquitinate c-Met leads to hyperactivation of mTOR signaling in a mouse model of autosomal dominant polycystic kidney disease. J. Clin. Invest. 2010, 120:3617-3628.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 3617-3628
-
-
Qin, S.1
-
45
-
-
77949887674
-
Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1
-
Shillingford J.M., et al. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol. 2010, 21:489-497.
-
(2010)
J. Am. Soc. Nephrol.
, vol.21
, pp. 489-497
-
-
Shillingford, J.M.1
-
46
-
-
34447566918
-
Mitotic activation of Akt signalling pathway in Han:SPRD rats with polycystic kidney disease
-
Wahl P.R., et al. Mitotic activation of Akt signalling pathway in Han:SPRD rats with polycystic kidney disease. Nephrology (Carlton) 2007, 12:357-363.
-
(2007)
Nephrology (Carlton)
, vol.12
, pp. 357-363
-
-
Wahl, P.R.1
-
47
-
-
78651303135
-
MTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease
-
Belibi F., et al. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol. 2011, 300:F236-F244.
-
(2011)
Am. J. Physiol. Renal Physiol.
, vol.300
-
-
Belibi, F.1
-
48
-
-
78349246353
-
Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats
-
Renken C., et al. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant. 2011, 26:92-100.
-
(2011)
Nephrol. Dial. Transplant.
, vol.26
, pp. 92-100
-
-
Renken, C.1
-
49
-
-
71449093471
-
Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease
-
Wu M., et al. Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease. Am. J. Physiol. Renal Physiol. 2009, 297:F1597-F1605.
-
(2009)
Am. J. Physiol. Renal Physiol.
, vol.297
-
-
Wu, M.1
-
50
-
-
65949113601
-
Targeting mTOR with rapamycin: one dose does not fit all
-
Foster D.A., Toschi A. Targeting mTOR with rapamycin: one dose does not fit all. Cell Cycle 2009, 8:1026-1029.
-
(2009)
Cell Cycle
, vol.8
, pp. 1026-1029
-
-
Foster, D.A.1
Toschi, A.2
-
51
-
-
65449176538
-
Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1
-
Distefano G., et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell. Biol. 2009, 29:2359-2371.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 2359-2371
-
-
Distefano, G.1
-
52
-
-
68949207750
-
Inhibition of PKHD1 may cause S-phase entry via mTOR signaling pathway
-
Zheng R., et al. Inhibition of PKHD1 may cause S-phase entry via mTOR signaling pathway. Cell Biol. Int. 2009, 33:926-933.
-
(2009)
Cell Biol. Int.
, vol.33
, pp. 926-933
-
-
Zheng, R.1
-
53
-
-
62849111751
-
Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin
-
Toschi A., et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol. Cell. Biol. 2009, 29:1411-1420.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 1411-1420
-
-
Toschi, A.1
-
54
-
-
67650494304
-
Monitoring kidney and renal cyst volumes applying MR approaches on a rapamycin treated mouse model of ADPKD
-
Reichardt W., et al. Monitoring kidney and renal cyst volumes applying MR approaches on a rapamycin treated mouse model of ADPKD. MAGMA 2009, 22:143-149.
-
(2009)
MAGMA
, vol.22
, pp. 143-149
-
-
Reichardt, W.1
-
55
-
-
34447514158
-
Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease
-
Wu M., et al. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press. Res. 2007, 30:253-259.
-
(2007)
Kidney Blood Press. Res.
, vol.30
, pp. 253-259
-
-
Wu, M.1
-
56
-
-
75649136977
-
Mycophenolate mofetil versus rapamycin in Han: SPRD rats with polycystic kidney disease
-
Zhang T., et al. Mycophenolate mofetil versus rapamycin in Han: SPRD rats with polycystic kidney disease. Biol. Res. 2009, 42:437-444.
-
(2009)
Biol. Res.
, vol.42
, pp. 437-444
-
-
Zhang, T.1
-
57
-
-
33646678189
-
Volume progression in polycystic kidney disease
-
Grantham J.J., et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 2006, 354:2122-2130.
-
(2006)
N. Engl. J. Med.
, vol.354
, pp. 2122-2130
-
-
Grantham, J.J.1
-
58
-
-
47249129077
-
Polycystic kidney disease
-
Grantham J.J. Polycystic kidney disease. Sci. Med. 2003, 9:128-138.
-
(2003)
Sci. Med.
, vol.9
, pp. 128-138
-
-
Grantham, J.J.1
-
59
-
-
77954770878
-
Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases
-
Torres V.E., et al. Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin. J. Am. Soc. Nephrol. 2010, 5:1312-1329.
-
(2010)
Clin. J. Am. Soc. Nephrol.
, vol.5
, pp. 1312-1329
-
-
Torres, V.E.1
-
60
-
-
40449138290
-
Sirolimus reduces polycystic liver volume in ADPKD patients
-
Qian Q., et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol. 2008, 19:631-638.
-
(2008)
J. Am. Soc. Nephrol.
, vol.19
, pp. 631-638
-
-
Qian, Q.1
-
61
-
-
77956029702
-
Sirolimus and kidney growth in autosomal dominant polycystic kidney disease
-
Serra A.L., et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2010, 363:820-829.
-
(2010)
N. Engl. J. Med.
, vol.363
, pp. 820-829
-
-
Serra, A.L.1
-
62
-
-
77956035166
-
Everolimus in patients with autosomal dominant polycystic kidney disease
-
Walz G., et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2010, 363:830-840.
-
(2010)
N. Engl. J. Med.
, vol.363
, pp. 830-840
-
-
Walz, G.1
-
63
-
-
79951674629
-
MTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression
-
Huber T.B., et al. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int. 2010, 79:502-511.
-
(2010)
Kidney Int.
, vol.79
, pp. 502-511
-
-
Huber, T.B.1
-
64
-
-
77952986486
-
Sirolimus therapy to halt the progression of ADPKD
-
Perico N., et al. Sirolimus therapy to halt the progression of ADPKD. J. Am. Soc. Nephrol. 2010, 21:1031-1040.
-
(2010)
J. Am. Soc. Nephrol.
, vol.21
, pp. 1031-1040
-
-
Perico, N.1
-
65
-
-
78649503269
-
Autosomal dominant polycystic kidney disease and mTOR inhibitors: the narrow road between hope and disappointment
-
Ponticelli C., Locatelli F. Autosomal dominant polycystic kidney disease and mTOR inhibitors: the narrow road between hope and disappointment. Nephrol. Dial. Transplant. 2010, 25:3809-3812.
-
(2010)
Nephrol. Dial. Transplant.
, vol.25
, pp. 3809-3812
-
-
Ponticelli, C.1
Locatelli, F.2
-
66
-
-
77958071860
-
Recent advances in the discovery of small molecule mTOR inhibitors
-
Roychowdhury A., et al. Recent advances in the discovery of small molecule mTOR inhibitors. Future Med. Chem. 2010, 2:1577-1589.
-
(2010)
Future Med. Chem.
, vol.2
, pp. 1577-1589
-
-
Roychowdhury, A.1
-
67
-
-
70449719320
-
Activation of AMP-activated kinase as a strategy for managing autosomal dominant polycystic kidney disease
-
McCarty M.F., et al. Activation of AMP-activated kinase as a strategy for managing autosomal dominant polycystic kidney disease. Med. Hypotheses 2009, 73:1008-1010.
-
(2009)
Med. Hypotheses
, vol.73
, pp. 1008-1010
-
-
McCarty, M.F.1
-
68
-
-
79952297525
-
Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis
-
Takiar V., et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2462-2467.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2462-2467
-
-
Takiar, V.1
-
69
-
-
77954337045
-
Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD
-
Leuenroth S.J., et al. Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD. Nephrol. Dial. Transplant. 2010, 25:2187-2194.
-
(2010)
Nephrol. Dial. Transplant.
, vol.25
, pp. 2187-2194
-
-
Leuenroth, S.J.1
-
70
-
-
0142073812
-
Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist
-
Gattone V.H., IInd, et al. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 2003, 9:1323-1326.
-
(2003)
Nat. Med.
, vol.9
, pp. 1323-1326
-
-
Gattone IInd, V.H.1
-
71
-
-
1942486801
-
Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease
-
Torres V.E., et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat. Med. 2004, 10:363-364.
-
(2004)
Nat. Med.
, vol.10
, pp. 363-364
-
-
Torres, V.E.1
-
72
-
-
24344470833
-
Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease
-
Ruggenenti P., et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 2005, 68:206-216.
-
(2005)
Kidney Int.
, vol.68
, pp. 206-216
-
-
Ruggenenti, P.1
-
73
-
-
77952965873
-
Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease
-
Hogan M.C., et al. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J. Am. Soc. Nephrol. 2010, 21:1052-1061.
-
(2010)
J. Am. Soc. Nephrol.
, vol.21
, pp. 1052-1061
-
-
Hogan, M.C.1
-
74
-
-
69249209814
-
Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease
-
Li H., Sheppard D.N. Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease. BioDrugs 2009, 23:203-216.
-
(2009)
BioDrugs
, vol.23
, pp. 203-216
-
-
Li, H.1
Sheppard, D.N.2
-
75
-
-
33845909549
-
Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine
-
Bukanov N.O., et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 2006, 444:949-952.
-
(2006)
Nature
, vol.444
, pp. 949-952
-
-
Bukanov, N.O.1
-
76
-
-
34147140550
-
Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy
-
Ibraghimov-Beskrovnaya O. Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy. Cell Cycle 2007, 6:776-779.
-
(2007)
Cell Cycle
, vol.6
, pp. 776-779
-
-
Ibraghimov-Beskrovnaya, O.1
-
77
-
-
0033995015
-
Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor
-
Sweeney W.E., et al. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int. 2000, 57:33-40.
-
(2000)
Kidney Int.
, vol.57
, pp. 33-40
-
-
Sweeney, W.E.1
-
78
-
-
48149104099
-
Src inhibition ameliorates polycystic kidney disease
-
Sweeney W.E., et al. Src inhibition ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 2008, 19:1331-1341.
-
(2008)
J. Am. Soc. Nephrol.
, vol.19
, pp. 1331-1341
-
-
Sweeney, W.E.1
-
79
-
-
33646948499
-
Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease
-
Omori S., et al. Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J. Am. Soc. Nephrol. 2006, 17:1604-1614.
-
(2006)
J. Am. Soc. Nephrol.
, vol.17
, pp. 1604-1614
-
-
Omori, S.1
-
80
-
-
54049136052
-
20-HETE mediates proliferation of renal epithelial cells in polycystic kidney disease
-
Park F., et al. 20-HETE mediates proliferation of renal epithelial cells in polycystic kidney disease. J. Am. Soc. Nephrol. 2008, 19:1929-1939.
-
(2008)
J. Am. Soc. Nephrol.
, vol.19
, pp. 1929-1939
-
-
Park, F.1
-
81
-
-
49149111379
-
A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease
-
Li X., et al. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 2008, 14:863-868.
-
(2008)
Nat. Med.
, vol.14
, pp. 863-868
-
-
Li, X.1
-
82
-
-
34147215806
-
Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia
-
Wang S., et al. Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol. Cell. Biol. 2007, 27:3241-3252.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 3241-3252
-
-
Wang, S.1
-
83
-
-
33847792873
-
Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling
-
Xu C., et al. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am. J. Physiol. Renal Physiol. 2007, 292:F930-F945.
-
(2007)
Am. J. Physiol. Renal Physiol.
, vol.292
-
-
Xu, C.1
-
84
-
-
4644367485
-
Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype
-
Yamaguchi T., et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 2004, 279:40419-40430.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 40419-40430
-
-
Yamaguchi, T.1
-
85
-
-
29744470060
-
Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease
-
Low S.H., et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev. Cell 2006, 10:57-69.
-
(2006)
Dev. Cell
, vol.10
, pp. 57-69
-
-
Low, S.H.1
-
86
-
-
13544252818
-
Cystic renal neoplasia following conditional inactivation of apc in mouse renal tubular epithelium
-
Qian C.N., et al. Cystic renal neoplasia following conditional inactivation of apc in mouse renal tubular epithelium. J. Biol. Chem. 2005, 280:3938-3945.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 3938-3945
-
-
Qian, C.N.1
-
87
-
-
0035921733
-
Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene
-
Saadi-Kheddouci S., et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene 2001, 20:5972-5981.
-
(2001)
Oncogene
, vol.20
, pp. 5972-5981
-
-
Saadi-Kheddouci, S.1
-
88
-
-
0033582438
-
The polycystic kidney disease 1 gene product modulates Wnt signaling
-
Kim E., et al. The polycystic kidney disease 1 gene product modulates Wnt signaling. J. Biol. Chem. 1999, 274:4947-4953.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 4947-4953
-
-
Kim, E.1
-
89
-
-
69949172478
-
Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy
-
Lancaster M.A., et al. Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 2009, 15:1046-1054.
-
(2009)
Nat. Med.
, vol.15
, pp. 1046-1054
-
-
Lancaster, M.A.1
-
90
-
-
0037133954
-
PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2
-
Bhunia A.K., et al. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 2002, 109:157-168.
-
(2002)
Cell
, vol.109
, pp. 157-168
-
-
Bhunia, A.K.1
-
91
-
-
28544433252
-
Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2
-
Li X., et al. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat. Cell Biol. 2005, 7:1202-1212.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 1202-1212
-
-
Li, X.1
-
92
-
-
27144529532
-
PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts
-
Schneider L., et al. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 2005, 15:1861-1866.
-
(2005)
Curr. Biol.
, vol.15
, pp. 1861-1866
-
-
Schneider, L.1
-
93
-
-
23144466931
-
Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors
-
Liu A., et al. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005, 132:3103-3111.
-
(2005)
Development
, vol.132
, pp. 3103-3111
-
-
Liu, A.1
-
94
-
-
48249127966
-
Epithelial Na+ channel activation and processing in mice lacking SGK1
-
Fejes-Toth G., et al. Epithelial Na+ channel activation and processing in mice lacking SGK1. Am. J. Physiol. Renal Physiol. 2008, 294:F1298-F1305.
-
(2008)
Am. J. Physiol. Renal Physiol.
, vol.294
-
-
Fejes-Toth, G.1
-
95
-
-
67049164622
-
Serum- and glucocorticoid-inducible kinases (SGK) regulate KCNQ1/KCNE potassium channels
-
Strutz-Seebohm N., et al. Serum- and glucocorticoid-inducible kinases (SGK) regulate KCNQ1/KCNE potassium channels. Channels (Austin) 2009, 3:88-90.
-
(2009)
Channels (Austin)
, vol.3
, pp. 88-90
-
-
Strutz-Seebohm, N.1
-
96
-
-
33845296136
-
Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1
-
Ullrich S., et al. Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1. Biochem. Biophys. Res. Commun. 2007, 352:662-667.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.352
, pp. 662-667
-
-
Ullrich, S.1
-
97
-
-
68949116300
-
Polycystin-1 C-terminal cleavage is modulated by polycystin-2 expression
-
Bertuccio C.A., et al. Polycystin-1 C-terminal cleavage is modulated by polycystin-2 expression. J. Biol. Chem. 2009, 284:21011-21026.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 21011-21026
-
-
Bertuccio, C.A.1
-
98
-
-
78349286779
-
The cell biology of polycystic kidney disease
-
Chapin H.C., Caplan M.J. The cell biology of polycystic kidney disease. J. Cell Biol. 2010, 191:701-710.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 701-710
-
-
Chapin, H.C.1
Caplan, M.J.2
-
99
-
-
85047694216
-
Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1C terminus
-
Chauvet V., et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1C terminus. J. Clin. Invest. 2004, 114:1433-1443.
-
(2004)
J. Clin. Invest.
, vol.114
, pp. 1433-1443
-
-
Chauvet, V.1
-
100
-
-
15844385078
-
PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein
-
Mochizuki T., et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996, 272:1339-1342.
-
(1996)
Science
, vol.272
, pp. 1339-1342
-
-
Mochizuki, T.1
-
101
-
-
33846265233
-
Cell biology of polycystin-2
-
Tsiokas L., et al. Cell biology of polycystin-2. Cell. Signal. 2007, 19:444-453.
-
(2007)
Cell. Signal.
, vol.19
, pp. 444-453
-
-
Tsiokas, L.1
-
102
-
-
0034700483
-
Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents
-
Hanaoka K., et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 2000, 408:990-994.
-
(2000)
Nature
, vol.408
, pp. 990-994
-
-
Hanaoka, K.1
-
103
-
-
2942584916
-
The N-terminal extracellular domain is required for polycystin-1-dependent channel activity
-
Babich V., et al. The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. J. Biol. Chem. 2004, 279:25582-25589.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 25582-25589
-
-
Babich, V.1
-
104
-
-
0036122434
-
Polycystin-2 is an intracellular calcium release channel
-
Koulen P., et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell. Biol. 2002, 4:191-197.
-
(2002)
Nat. Cell. Biol.
, vol.4
, pp. 191-197
-
-
Koulen, P.1
-
105
-
-
0036509712
-
The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein
-
Ward C.J., et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 2002, 30:259-269.
-
(2002)
Nat. Genet.
, vol.30
, pp. 259-269
-
-
Ward, C.J.1
-
106
-
-
18344366124
-
PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats
-
Onuchic L.F., et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 2002, 70:1305-1317.
-
(2002)
Am. J. Hum. Genet.
, vol.70
, pp. 1305-1317
-
-
Onuchic, L.F.1
-
107
-
-
34447308769
-
Polyductin undergoes notch-like processing and regulated release from primary cilia
-
Kaimori J.Y., et al. Polyductin undergoes notch-like processing and regulated release from primary cilia. Hum. Mol. Genet. 2007, 16:942-956.
-
(2007)
Hum. Mol. Genet.
, vol.16
, pp. 942-956
-
-
Kaimori, J.Y.1
-
108
-
-
40449103145
-
Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function
-
Kim I., et al. Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J. Am. Soc. Nephrol. 2008, 19:455-468.
-
(2008)
J. Am. Soc. Nephrol.
, vol.19
, pp. 455-468
-
-
Kim, I.1
-
109
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S., et al. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40:310-322.
-
(2010)
Mol. Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
-
110
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
111
-
-
0037097863
-
Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
-
Fingar D.C., et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16:1472-1487.
-
(2002)
Genes Dev.
, vol.16
, pp. 1472-1487
-
-
Fingar, D.C.1
-
112
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S., et al. TOR signaling in growth and metabolism. Cell 2006, 124:471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
-
113
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P., et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009, 136:521-534.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
-
114
-
-
70349239101
-
New insights into mTOR signaling: mTORC2 and beyond
-
Alessi D.R., et al. New insights into mTOR signaling: mTORC2 and beyond. Sci. Signal. 2009, 2:pe27.
-
(2009)
Sci. Signal.
, vol.2
-
-
Alessi, D.R.1
-
115
-
-
44949215822
-
The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
-
Huang J., et al. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell. Biol. 2008, 28:4104-4115.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4104-4115
-
-
Huang, J.1
-
116
-
-
68049126433
-
Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors
-
Huang J., et al. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res. 2009, 69:6107-6114.
-
(2009)
Cancer Res.
, vol.69
, pp. 6107-6114
-
-
Huang, J.1
-
117
-
-
33646111903
-
Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
-
Cai S.L., et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 2006, 173:279-289.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 279-289
-
-
Cai, S.L.1
-
118
-
-
0037855834
-
Identification of a proline-rich Akt substrate as a 14-3-3 binding partner
-
Kovacina K.S., et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 2003, 278:10189-10194.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 10189-10194
-
-
Kovacina, K.S.1
-
119
-
-
77949912176
-
Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1
-
Nascimento E.B., et al. Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1. Cell. Signal. 2010, 22:961-967.
-
(2010)
Cell. Signal.
, vol.22
, pp. 961-967
-
-
Nascimento, E.B.1
-
120
-
-
0035976615
-
Phosphatidic acid-mediated mitogenic activation of mTOR signaling
-
Fang Y., et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001, 294:1942-1945.
-
(2001)
Science
, vol.294
, pp. 1942-1945
-
-
Fang, Y.1
-
121
-
-
77953091045
-
Structure of the human mTOR complex I and its implications for rapamycin inhibition
-
Yip C.K., et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38:768-774.
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
|