메뉴 건너뛰기




Volumn 17, Issue 11, 2011, Pages 625-633

MTOR signaling in polycystic kidney disease

Author keywords

[No Author keywords available]

Indexed keywords

CYCLOSPORIN; EVEROLIMUS; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; PLACEBO; POLYCYSTIN 1; POLYCYSTIN 2; RAPAMYCIN; TACROLIMUS;

EID: 80755139525     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2011.06.003     Document Type: Review
Times cited : (74)

References (121)
  • 2
    • 67649841563 scopus 로고    scopus 로고
    • Autosomal dominant polycystic kidney disease: the last 3 years
    • Torres V.E., Harris P.C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 2009, 76:149-168.
    • (2009) Kidney Int. , vol.76 , pp. 149-168
    • Torres, V.E.1    Harris, P.C.2
  • 3
    • 67049114683 scopus 로고    scopus 로고
    • Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease
    • Ecder T., Schrier R.W. Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease. Nat. Rev. Nephrol. 2009, 5:221-228.
    • (2009) Nat. Rev. Nephrol. , vol.5 , pp. 221-228
    • Ecder, T.1    Schrier, R.W.2
  • 4
    • 79954429542 scopus 로고    scopus 로고
    • Diagnosis and management of childhood polycystic kidney disease
    • Sweeney W.E., Avner E.D. Diagnosis and management of childhood polycystic kidney disease. Pediatr. Nephrol. 2011, 26:675-692.
    • (2011) Pediatr. Nephrol. , vol.26 , pp. 675-692
    • Sweeney, W.E.1    Avner, E.D.2
  • 5
    • 33847611591 scopus 로고    scopus 로고
    • Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease
    • Menezes L.F., Onuchic L.F. Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease. Braz. J. Med. Biol. Res. 2006, 39:1537-1548.
    • (2006) Braz. J. Med. Biol. Res. , vol.39 , pp. 1537-1548
    • Menezes, L.F.1    Onuchic, L.F.2
  • 6
    • 58149504281 scopus 로고    scopus 로고
    • Nephronophthisis: disease mechanisms of a ciliopathy
    • Hildebrandt F., et al. Nephronophthisis: disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol. 2009, 20:23-35.
    • (2009) J. Am. Soc. Nephrol. , vol.20 , pp. 23-35
    • Hildebrandt, F.1
  • 7
    • 77249163235 scopus 로고    scopus 로고
    • Treatment strategies and clinical trial design in ADPKD
    • Torres V.E. Treatment strategies and clinical trial design in ADPKD. Adv. Chronic Kidney Dis. 2010, 17:190-204.
    • (2010) Adv. Chronic Kidney Dis. , vol.17 , pp. 190-204
    • Torres, V.E.1
  • 8
    • 63849273195 scopus 로고    scopus 로고
    • Advances in the pathogenesis and treatment of polycystic kidney disease
    • Patel V., et al. Advances in the pathogenesis and treatment of polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 2009, 18:99-106.
    • (2009) Curr. Opin. Nephrol. Hypertens. , vol.18 , pp. 99-106
    • Patel, V.1
  • 9
    • 78649910328 scopus 로고    scopus 로고
    • Mechanisms of nephronophthisis and related ciliopathies
    • Hurd T.W., Hildebrandt F. Mechanisms of nephronophthisis and related ciliopathies. Nephron. Exp. Nephrol. 2011, 118:e9-e14.
    • (2011) Nephron. Exp. Nephrol. , vol.118
    • Hurd, T.W.1    Hildebrandt, F.2
  • 11
    • 76649096673 scopus 로고    scopus 로고
    • The primary cilium at a glance
    • Satir P., et al. The primary cilium at a glance. J. Cell Sci. 2011, 123:499-503.
    • (2011) J. Cell Sci. , vol.123 , pp. 499-503
    • Satir, P.1
  • 12
    • 77951101203 scopus 로고    scopus 로고
    • The primary cilium: a signalling centre during vertebrate development
    • Goetz S.C., Anderson K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 2010, 11:331-344.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 331-344
    • Goetz, S.C.1    Anderson, K.V.2
  • 13
    • 79960644241 scopus 로고    scopus 로고
    • Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms
    • Gascue C., et al. Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms. Pediatr. Nephrol. 2011, 26:1181-1195.
    • (2011) Pediatr. Nephrol. , vol.26 , pp. 1181-1195
    • Gascue, C.1
  • 14
    • 77249103612 scopus 로고    scopus 로고
    • Molecular advances in autosomal dominant polycystic kidney disease
    • Gallagher A.R., et al. Molecular advances in autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis. 2010, 17:118-130.
    • (2010) Adv. Chronic Kidney Dis. , vol.17 , pp. 118-130
    • Gallagher, A.R.1
  • 15
    • 0037019017 scopus 로고    scopus 로고
    • Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease
    • Pazour G.J., et al. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 2002, 12:R378-R380.
    • (2002) Curr. Biol. , vol.12
    • Pazour, G.J.1
  • 16
    • 0036785149 scopus 로고    scopus 로고
    • The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia
    • Yoder B.K., et al. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 2002, 13:2508-2516.
    • (2002) J. Am. Soc. Nephrol. , vol.13 , pp. 2508-2516
    • Yoder, B.K.1
  • 17
    • 10744220950 scopus 로고    scopus 로고
    • Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia
    • Ward C.J., et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum. Mol. Genet. 2003, 12:2703-2710.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 2703-2710
    • Ward, C.J.1
  • 18
    • 28844460656 scopus 로고    scopus 로고
    • Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease?
    • Hildebrandt F., Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease?. Nat. Rev. Genet. 2005, 6:928-940.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 928-940
    • Hildebrandt, F.1    Otto, E.2
  • 19
    • 0037884961 scopus 로고    scopus 로고
    • Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease
    • Lin F., et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:5286-5291.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 5286-5291
    • Lin, F.1
  • 20
    • 0034735526 scopus 로고    scopus 로고
    • Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella
    • Pazour G.J., et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 2000, 151:709-718.
    • (2000) J. Cell Biol. , vol.151 , pp. 709-718
    • Pazour, G.J.1
  • 21
    • 33749235323 scopus 로고    scopus 로고
    • Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease
    • Smith L.A., et al. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J. Am. Soc. Nephrol. 2006, 17:2821-2831.
    • (2006) J. Am. Soc. Nephrol. , vol.17 , pp. 2821-2831
    • Smith, L.A.1
  • 22
    • 0035498717 scopus 로고    scopus 로고
    • Bending the MDCK cell primary cilium increases intracellular calcium
    • Praetorius H.A., Spring K.R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 2001, 184:71-79.
    • (2001) J. Membr. Biol. , vol.184 , pp. 71-79
    • Praetorius, H.A.1    Spring, K.R.2
  • 23
    • 0037317302 scopus 로고    scopus 로고
    • Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells
    • Nauli S.M., et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 2003, 33:129-137.
    • (2003) Nat. Genet. , vol.33 , pp. 129-137
    • Nauli, S.M.1
  • 24
    • 20944435539 scopus 로고    scopus 로고
    • Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways
    • Simons M., et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 2005, 37:537-543.
    • (2005) Nat. Genet. , vol.37 , pp. 537-543
    • Simons, M.1
  • 25
    • 27144460671 scopus 로고    scopus 로고
    • Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates
    • Ross A.J., et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 2005, 37:1135-1140.
    • (2005) Nat. Genet. , vol.37 , pp. 1135-1140
    • Ross, A.J.1
  • 26
    • 41349107244 scopus 로고    scopus 로고
    • THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia
    • Tran P.V., et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat. Genet. 2008, 40:403-410.
    • (2008) Nat. Genet. , vol.40 , pp. 403-410
    • Tran, P.V.1
  • 27
    • 58149333235 scopus 로고    scopus 로고
    • The primary cilium at the crossroads of mammalian hedgehog signaling
    • Wong S.Y., Reiter J.F. The primary cilium at the crossroads of mammalian hedgehog signaling. Curr. Top. Dev. Biol. 2008, 85:225-260.
    • (2008) Curr. Top. Dev. Biol. , vol.85 , pp. 225-260
    • Wong, S.Y.1    Reiter, J.F.2
  • 28
    • 58149343374 scopus 로고    scopus 로고
    • The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair
    • Christensen S.T., et al. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr. Top. Dev. Biol. 2008, 85:261-301.
    • (2008) Curr. Top. Dev. Biol. , vol.85 , pp. 261-301
    • Christensen, S.T.1
  • 29
    • 57149087523 scopus 로고    scopus 로고
    • Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors
    • Masyuk A.I., et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295:G725-G734.
    • (2008) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.295
    • Masyuk, A.I.1
  • 30
    • 78149259013 scopus 로고    scopus 로고
    • Primary cilia regulate mTORC1 activity and cell size through Lkb1
    • Boehlke C., et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 2010, 12:1115-1122.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1115-1122
    • Boehlke, C.1
  • 31
    • 18744380752 scopus 로고    scopus 로고
    • Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease
    • Tao Y., et al. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol. 2005, 16:46-51.
    • (2005) J. Am. Soc. Nephrol. , vol.16 , pp. 46-51
    • Tao, Y.1
  • 32
    • 33644859253 scopus 로고    scopus 로고
    • Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD)
    • Wahl P.R., et al. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant. 2006, 21:598-604.
    • (2006) Nephrol. Dial. Transplant. , vol.21 , pp. 598-604
    • Wahl, P.R.1
  • 33
    • 0028051871 scopus 로고
    • Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease - a contiguous gene syndrome
    • Brook-Carter P.T., et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease - a contiguous gene syndrome. Nat. Genet. 1994, 8:328-332.
    • (1994) Nat. Genet. , vol.8 , pp. 328-332
    • Brook-Carter, P.T.1
  • 34
    • 66149098514 scopus 로고    scopus 로고
    • Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis
    • Bonnet C.S., et al. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum. Mol. Genet. 2009, 18:2166-2176.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 2166-2176
    • Bonnet, C.S.1
  • 35
    • 31544443860 scopus 로고    scopus 로고
    • TSC2, a key player in tumor suppression and cystic kidney disease
    • Cai S.L., Walker C.L. TSC2, a key player in tumor suppression and cystic kidney disease. Nephrol. Ther. 2006, 2(Suppl. 2):S119-S122.
    • (2006) Nephrol. Ther. , vol.2 , Issue.SUPPL. 2
    • Cai, S.L.1    Walker, C.L.2
  • 36
    • 0035019467 scopus 로고    scopus 로고
    • Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene
    • Kleymenova E., et al. Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene. Mol. Cell 2001, 7:823-832.
    • (2001) Mol. Cell , vol.7 , pp. 823-832
    • Kleymenova, E.1
  • 37
    • 57649243069 scopus 로고    scopus 로고
    • The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway
    • Hartman T.R., et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum. Mol. Genet. 2009, 18:151-163.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 151-163
    • Hartman, T.R.1
  • 38
    • 79959342471 scopus 로고    scopus 로고
    • Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level?
    • Canaud G., et al. Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level?. Am. J. Transplant. 2010, 10:1701-1706.
    • (2010) Am. J. Transplant. , vol.10 , pp. 1701-1706
    • Canaud, G.1
  • 39
    • 33645769011 scopus 로고    scopus 로고
    • The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease
    • Shillingford J.M., et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:5466-5471.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 5466-5471
    • Shillingford, J.M.1
  • 40
    • 77957595691 scopus 로고    scopus 로고
    • Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease
    • Zafar I., et al. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int. 2010, 78:754-761.
    • (2010) Kidney Int. , vol.78 , pp. 754-761
    • Zafar, I.1
  • 41
    • 67649872366 scopus 로고    scopus 로고
    • Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis
    • Gattone V.H., IInd, et al. Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney Int. 2009, 76:178-182.
    • (2009) Kidney Int. , vol.76 , pp. 178-182
    • Gattone IInd, V.H.1
  • 42
    • 77954488392 scopus 로고    scopus 로고
    • Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models
    • Natoli T.A., et al. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat. Med. 2010, 16:788-792.
    • (2010) Nat. Med. , vol.16 , pp. 788-792
    • Natoli, T.A.1
  • 43
    • 77949528561 scopus 로고    scopus 로고
    • Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR
    • Dere R., et al. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS ONE 2010, 5:e9239.
    • (2010) PLoS ONE , vol.5
    • Dere, R.1
  • 44
    • 77957847881 scopus 로고    scopus 로고
    • Failure to ubiquitinate c-Met leads to hyperactivation of mTOR signaling in a mouse model of autosomal dominant polycystic kidney disease
    • Qin S., et al. Failure to ubiquitinate c-Met leads to hyperactivation of mTOR signaling in a mouse model of autosomal dominant polycystic kidney disease. J. Clin. Invest. 2010, 120:3617-3628.
    • (2010) J. Clin. Invest. , vol.120 , pp. 3617-3628
    • Qin, S.1
  • 45
    • 77949887674 scopus 로고    scopus 로고
    • Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1
    • Shillingford J.M., et al. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol. 2010, 21:489-497.
    • (2010) J. Am. Soc. Nephrol. , vol.21 , pp. 489-497
    • Shillingford, J.M.1
  • 46
    • 34447566918 scopus 로고    scopus 로고
    • Mitotic activation of Akt signalling pathway in Han:SPRD rats with polycystic kidney disease
    • Wahl P.R., et al. Mitotic activation of Akt signalling pathway in Han:SPRD rats with polycystic kidney disease. Nephrology (Carlton) 2007, 12:357-363.
    • (2007) Nephrology (Carlton) , vol.12 , pp. 357-363
    • Wahl, P.R.1
  • 47
    • 78651303135 scopus 로고    scopus 로고
    • MTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease
    • Belibi F., et al. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol. 2011, 300:F236-F244.
    • (2011) Am. J. Physiol. Renal Physiol. , vol.300
    • Belibi, F.1
  • 48
    • 78349246353 scopus 로고    scopus 로고
    • Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats
    • Renken C., et al. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant. 2011, 26:92-100.
    • (2011) Nephrol. Dial. Transplant. , vol.26 , pp. 92-100
    • Renken, C.1
  • 49
    • 71449093471 scopus 로고    scopus 로고
    • Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease
    • Wu M., et al. Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease. Am. J. Physiol. Renal Physiol. 2009, 297:F1597-F1605.
    • (2009) Am. J. Physiol. Renal Physiol. , vol.297
    • Wu, M.1
  • 50
    • 65949113601 scopus 로고    scopus 로고
    • Targeting mTOR with rapamycin: one dose does not fit all
    • Foster D.A., Toschi A. Targeting mTOR with rapamycin: one dose does not fit all. Cell Cycle 2009, 8:1026-1029.
    • (2009) Cell Cycle , vol.8 , pp. 1026-1029
    • Foster, D.A.1    Toschi, A.2
  • 51
    • 65449176538 scopus 로고    scopus 로고
    • Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1
    • Distefano G., et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell. Biol. 2009, 29:2359-2371.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 2359-2371
    • Distefano, G.1
  • 52
    • 68949207750 scopus 로고    scopus 로고
    • Inhibition of PKHD1 may cause S-phase entry via mTOR signaling pathway
    • Zheng R., et al. Inhibition of PKHD1 may cause S-phase entry via mTOR signaling pathway. Cell Biol. Int. 2009, 33:926-933.
    • (2009) Cell Biol. Int. , vol.33 , pp. 926-933
    • Zheng, R.1
  • 53
    • 62849111751 scopus 로고    scopus 로고
    • Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin
    • Toschi A., et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol. Cell. Biol. 2009, 29:1411-1420.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 1411-1420
    • Toschi, A.1
  • 54
    • 67650494304 scopus 로고    scopus 로고
    • Monitoring kidney and renal cyst volumes applying MR approaches on a rapamycin treated mouse model of ADPKD
    • Reichardt W., et al. Monitoring kidney and renal cyst volumes applying MR approaches on a rapamycin treated mouse model of ADPKD. MAGMA 2009, 22:143-149.
    • (2009) MAGMA , vol.22 , pp. 143-149
    • Reichardt, W.1
  • 55
    • 34447514158 scopus 로고    scopus 로고
    • Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease
    • Wu M., et al. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press. Res. 2007, 30:253-259.
    • (2007) Kidney Blood Press. Res. , vol.30 , pp. 253-259
    • Wu, M.1
  • 56
    • 75649136977 scopus 로고    scopus 로고
    • Mycophenolate mofetil versus rapamycin in Han: SPRD rats with polycystic kidney disease
    • Zhang T., et al. Mycophenolate mofetil versus rapamycin in Han: SPRD rats with polycystic kidney disease. Biol. Res. 2009, 42:437-444.
    • (2009) Biol. Res. , vol.42 , pp. 437-444
    • Zhang, T.1
  • 57
    • 33646678189 scopus 로고    scopus 로고
    • Volume progression in polycystic kidney disease
    • Grantham J.J., et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 2006, 354:2122-2130.
    • (2006) N. Engl. J. Med. , vol.354 , pp. 2122-2130
    • Grantham, J.J.1
  • 58
    • 47249129077 scopus 로고    scopus 로고
    • Polycystic kidney disease
    • Grantham J.J. Polycystic kidney disease. Sci. Med. 2003, 9:128-138.
    • (2003) Sci. Med. , vol.9 , pp. 128-138
    • Grantham, J.J.1
  • 59
    • 77954770878 scopus 로고    scopus 로고
    • Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases
    • Torres V.E., et al. Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin. J. Am. Soc. Nephrol. 2010, 5:1312-1329.
    • (2010) Clin. J. Am. Soc. Nephrol. , vol.5 , pp. 1312-1329
    • Torres, V.E.1
  • 60
    • 40449138290 scopus 로고    scopus 로고
    • Sirolimus reduces polycystic liver volume in ADPKD patients
    • Qian Q., et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol. 2008, 19:631-638.
    • (2008) J. Am. Soc. Nephrol. , vol.19 , pp. 631-638
    • Qian, Q.1
  • 61
    • 77956029702 scopus 로고    scopus 로고
    • Sirolimus and kidney growth in autosomal dominant polycystic kidney disease
    • Serra A.L., et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2010, 363:820-829.
    • (2010) N. Engl. J. Med. , vol.363 , pp. 820-829
    • Serra, A.L.1
  • 62
    • 77956035166 scopus 로고    scopus 로고
    • Everolimus in patients with autosomal dominant polycystic kidney disease
    • Walz G., et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2010, 363:830-840.
    • (2010) N. Engl. J. Med. , vol.363 , pp. 830-840
    • Walz, G.1
  • 63
    • 79951674629 scopus 로고    scopus 로고
    • MTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression
    • Huber T.B., et al. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int. 2010, 79:502-511.
    • (2010) Kidney Int. , vol.79 , pp. 502-511
    • Huber, T.B.1
  • 64
    • 77952986486 scopus 로고    scopus 로고
    • Sirolimus therapy to halt the progression of ADPKD
    • Perico N., et al. Sirolimus therapy to halt the progression of ADPKD. J. Am. Soc. Nephrol. 2010, 21:1031-1040.
    • (2010) J. Am. Soc. Nephrol. , vol.21 , pp. 1031-1040
    • Perico, N.1
  • 65
    • 78649503269 scopus 로고    scopus 로고
    • Autosomal dominant polycystic kidney disease and mTOR inhibitors: the narrow road between hope and disappointment
    • Ponticelli C., Locatelli F. Autosomal dominant polycystic kidney disease and mTOR inhibitors: the narrow road between hope and disappointment. Nephrol. Dial. Transplant. 2010, 25:3809-3812.
    • (2010) Nephrol. Dial. Transplant. , vol.25 , pp. 3809-3812
    • Ponticelli, C.1    Locatelli, F.2
  • 66
    • 77958071860 scopus 로고    scopus 로고
    • Recent advances in the discovery of small molecule mTOR inhibitors
    • Roychowdhury A., et al. Recent advances in the discovery of small molecule mTOR inhibitors. Future Med. Chem. 2010, 2:1577-1589.
    • (2010) Future Med. Chem. , vol.2 , pp. 1577-1589
    • Roychowdhury, A.1
  • 67
    • 70449719320 scopus 로고    scopus 로고
    • Activation of AMP-activated kinase as a strategy for managing autosomal dominant polycystic kidney disease
    • McCarty M.F., et al. Activation of AMP-activated kinase as a strategy for managing autosomal dominant polycystic kidney disease. Med. Hypotheses 2009, 73:1008-1010.
    • (2009) Med. Hypotheses , vol.73 , pp. 1008-1010
    • McCarty, M.F.1
  • 68
    • 79952297525 scopus 로고    scopus 로고
    • Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis
    • Takiar V., et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2462-2467.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2462-2467
    • Takiar, V.1
  • 69
    • 77954337045 scopus 로고    scopus 로고
    • Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD
    • Leuenroth S.J., et al. Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD. Nephrol. Dial. Transplant. 2010, 25:2187-2194.
    • (2010) Nephrol. Dial. Transplant. , vol.25 , pp. 2187-2194
    • Leuenroth, S.J.1
  • 70
    • 0142073812 scopus 로고    scopus 로고
    • Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist
    • Gattone V.H., IInd, et al. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 2003, 9:1323-1326.
    • (2003) Nat. Med. , vol.9 , pp. 1323-1326
    • Gattone IInd, V.H.1
  • 71
    • 1942486801 scopus 로고    scopus 로고
    • Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease
    • Torres V.E., et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat. Med. 2004, 10:363-364.
    • (2004) Nat. Med. , vol.10 , pp. 363-364
    • Torres, V.E.1
  • 72
    • 24344470833 scopus 로고    scopus 로고
    • Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease
    • Ruggenenti P., et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 2005, 68:206-216.
    • (2005) Kidney Int. , vol.68 , pp. 206-216
    • Ruggenenti, P.1
  • 73
    • 77952965873 scopus 로고    scopus 로고
    • Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease
    • Hogan M.C., et al. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J. Am. Soc. Nephrol. 2010, 21:1052-1061.
    • (2010) J. Am. Soc. Nephrol. , vol.21 , pp. 1052-1061
    • Hogan, M.C.1
  • 74
    • 69249209814 scopus 로고    scopus 로고
    • Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease
    • Li H., Sheppard D.N. Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease. BioDrugs 2009, 23:203-216.
    • (2009) BioDrugs , vol.23 , pp. 203-216
    • Li, H.1    Sheppard, D.N.2
  • 75
    • 33845909549 scopus 로고    scopus 로고
    • Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine
    • Bukanov N.O., et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 2006, 444:949-952.
    • (2006) Nature , vol.444 , pp. 949-952
    • Bukanov, N.O.1
  • 76
    • 34147140550 scopus 로고    scopus 로고
    • Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy
    • Ibraghimov-Beskrovnaya O. Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy. Cell Cycle 2007, 6:776-779.
    • (2007) Cell Cycle , vol.6 , pp. 776-779
    • Ibraghimov-Beskrovnaya, O.1
  • 77
    • 0033995015 scopus 로고    scopus 로고
    • Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor
    • Sweeney W.E., et al. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int. 2000, 57:33-40.
    • (2000) Kidney Int. , vol.57 , pp. 33-40
    • Sweeney, W.E.1
  • 78
    • 48149104099 scopus 로고    scopus 로고
    • Src inhibition ameliorates polycystic kidney disease
    • Sweeney W.E., et al. Src inhibition ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 2008, 19:1331-1341.
    • (2008) J. Am. Soc. Nephrol. , vol.19 , pp. 1331-1341
    • Sweeney, W.E.1
  • 79
    • 33646948499 scopus 로고    scopus 로고
    • Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease
    • Omori S., et al. Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J. Am. Soc. Nephrol. 2006, 17:1604-1614.
    • (2006) J. Am. Soc. Nephrol. , vol.17 , pp. 1604-1614
    • Omori, S.1
  • 80
    • 54049136052 scopus 로고    scopus 로고
    • 20-HETE mediates proliferation of renal epithelial cells in polycystic kidney disease
    • Park F., et al. 20-HETE mediates proliferation of renal epithelial cells in polycystic kidney disease. J. Am. Soc. Nephrol. 2008, 19:1929-1939.
    • (2008) J. Am. Soc. Nephrol. , vol.19 , pp. 1929-1939
    • Park, F.1
  • 81
    • 49149111379 scopus 로고    scopus 로고
    • A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease
    • Li X., et al. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 2008, 14:863-868.
    • (2008) Nat. Med. , vol.14 , pp. 863-868
    • Li, X.1
  • 82
    • 34147215806 scopus 로고    scopus 로고
    • Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia
    • Wang S., et al. Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol. Cell. Biol. 2007, 27:3241-3252.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3241-3252
    • Wang, S.1
  • 83
    • 33847792873 scopus 로고    scopus 로고
    • Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling
    • Xu C., et al. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am. J. Physiol. Renal Physiol. 2007, 292:F930-F945.
    • (2007) Am. J. Physiol. Renal Physiol. , vol.292
    • Xu, C.1
  • 84
    • 4644367485 scopus 로고    scopus 로고
    • Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype
    • Yamaguchi T., et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 2004, 279:40419-40430.
    • (2004) J. Biol. Chem. , vol.279 , pp. 40419-40430
    • Yamaguchi, T.1
  • 85
    • 29744470060 scopus 로고    scopus 로고
    • Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease
    • Low S.H., et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev. Cell 2006, 10:57-69.
    • (2006) Dev. Cell , vol.10 , pp. 57-69
    • Low, S.H.1
  • 86
    • 13544252818 scopus 로고    scopus 로고
    • Cystic renal neoplasia following conditional inactivation of apc in mouse renal tubular epithelium
    • Qian C.N., et al. Cystic renal neoplasia following conditional inactivation of apc in mouse renal tubular epithelium. J. Biol. Chem. 2005, 280:3938-3945.
    • (2005) J. Biol. Chem. , vol.280 , pp. 3938-3945
    • Qian, C.N.1
  • 87
    • 0035921733 scopus 로고    scopus 로고
    • Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene
    • Saadi-Kheddouci S., et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene 2001, 20:5972-5981.
    • (2001) Oncogene , vol.20 , pp. 5972-5981
    • Saadi-Kheddouci, S.1
  • 88
    • 0033582438 scopus 로고    scopus 로고
    • The polycystic kidney disease 1 gene product modulates Wnt signaling
    • Kim E., et al. The polycystic kidney disease 1 gene product modulates Wnt signaling. J. Biol. Chem. 1999, 274:4947-4953.
    • (1999) J. Biol. Chem. , vol.274 , pp. 4947-4953
    • Kim, E.1
  • 89
    • 69949172478 scopus 로고    scopus 로고
    • Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy
    • Lancaster M.A., et al. Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 2009, 15:1046-1054.
    • (2009) Nat. Med. , vol.15 , pp. 1046-1054
    • Lancaster, M.A.1
  • 90
    • 0037133954 scopus 로고    scopus 로고
    • PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2
    • Bhunia A.K., et al. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 2002, 109:157-168.
    • (2002) Cell , vol.109 , pp. 157-168
    • Bhunia, A.K.1
  • 91
    • 28544433252 scopus 로고    scopus 로고
    • Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2
    • Li X., et al. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat. Cell Biol. 2005, 7:1202-1212.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 1202-1212
    • Li, X.1
  • 92
    • 27144529532 scopus 로고    scopus 로고
    • PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts
    • Schneider L., et al. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 2005, 15:1861-1866.
    • (2005) Curr. Biol. , vol.15 , pp. 1861-1866
    • Schneider, L.1
  • 93
    • 23144466931 scopus 로고    scopus 로고
    • Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors
    • Liu A., et al. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005, 132:3103-3111.
    • (2005) Development , vol.132 , pp. 3103-3111
    • Liu, A.1
  • 94
    • 48249127966 scopus 로고    scopus 로고
    • Epithelial Na+ channel activation and processing in mice lacking SGK1
    • Fejes-Toth G., et al. Epithelial Na+ channel activation and processing in mice lacking SGK1. Am. J. Physiol. Renal Physiol. 2008, 294:F1298-F1305.
    • (2008) Am. J. Physiol. Renal Physiol. , vol.294
    • Fejes-Toth, G.1
  • 95
    • 67049164622 scopus 로고    scopus 로고
    • Serum- and glucocorticoid-inducible kinases (SGK) regulate KCNQ1/KCNE potassium channels
    • Strutz-Seebohm N., et al. Serum- and glucocorticoid-inducible kinases (SGK) regulate KCNQ1/KCNE potassium channels. Channels (Austin) 2009, 3:88-90.
    • (2009) Channels (Austin) , vol.3 , pp. 88-90
    • Strutz-Seebohm, N.1
  • 96
    • 33845296136 scopus 로고    scopus 로고
    • Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1
    • Ullrich S., et al. Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1. Biochem. Biophys. Res. Commun. 2007, 352:662-667.
    • (2007) Biochem. Biophys. Res. Commun. , vol.352 , pp. 662-667
    • Ullrich, S.1
  • 97
    • 68949116300 scopus 로고    scopus 로고
    • Polycystin-1 C-terminal cleavage is modulated by polycystin-2 expression
    • Bertuccio C.A., et al. Polycystin-1 C-terminal cleavage is modulated by polycystin-2 expression. J. Biol. Chem. 2009, 284:21011-21026.
    • (2009) J. Biol. Chem. , vol.284 , pp. 21011-21026
    • Bertuccio, C.A.1
  • 98
    • 78349286779 scopus 로고    scopus 로고
    • The cell biology of polycystic kidney disease
    • Chapin H.C., Caplan M.J. The cell biology of polycystic kidney disease. J. Cell Biol. 2010, 191:701-710.
    • (2010) J. Cell Biol. , vol.191 , pp. 701-710
    • Chapin, H.C.1    Caplan, M.J.2
  • 99
    • 85047694216 scopus 로고    scopus 로고
    • Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1C terminus
    • Chauvet V., et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1C terminus. J. Clin. Invest. 2004, 114:1433-1443.
    • (2004) J. Clin. Invest. , vol.114 , pp. 1433-1443
    • Chauvet, V.1
  • 100
    • 15844385078 scopus 로고    scopus 로고
    • PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein
    • Mochizuki T., et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996, 272:1339-1342.
    • (1996) Science , vol.272 , pp. 1339-1342
    • Mochizuki, T.1
  • 101
    • 33846265233 scopus 로고    scopus 로고
    • Cell biology of polycystin-2
    • Tsiokas L., et al. Cell biology of polycystin-2. Cell. Signal. 2007, 19:444-453.
    • (2007) Cell. Signal. , vol.19 , pp. 444-453
    • Tsiokas, L.1
  • 102
    • 0034700483 scopus 로고    scopus 로고
    • Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents
    • Hanaoka K., et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 2000, 408:990-994.
    • (2000) Nature , vol.408 , pp. 990-994
    • Hanaoka, K.1
  • 103
    • 2942584916 scopus 로고    scopus 로고
    • The N-terminal extracellular domain is required for polycystin-1-dependent channel activity
    • Babich V., et al. The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. J. Biol. Chem. 2004, 279:25582-25589.
    • (2004) J. Biol. Chem. , vol.279 , pp. 25582-25589
    • Babich, V.1
  • 104
    • 0036122434 scopus 로고    scopus 로고
    • Polycystin-2 is an intracellular calcium release channel
    • Koulen P., et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell. Biol. 2002, 4:191-197.
    • (2002) Nat. Cell. Biol. , vol.4 , pp. 191-197
    • Koulen, P.1
  • 105
    • 0036509712 scopus 로고    scopus 로고
    • The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein
    • Ward C.J., et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 2002, 30:259-269.
    • (2002) Nat. Genet. , vol.30 , pp. 259-269
    • Ward, C.J.1
  • 106
    • 18344366124 scopus 로고    scopus 로고
    • PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats
    • Onuchic L.F., et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 2002, 70:1305-1317.
    • (2002) Am. J. Hum. Genet. , vol.70 , pp. 1305-1317
    • Onuchic, L.F.1
  • 107
    • 34447308769 scopus 로고    scopus 로고
    • Polyductin undergoes notch-like processing and regulated release from primary cilia
    • Kaimori J.Y., et al. Polyductin undergoes notch-like processing and regulated release from primary cilia. Hum. Mol. Genet. 2007, 16:942-956.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 942-956
    • Kaimori, J.Y.1
  • 108
    • 40449103145 scopus 로고    scopus 로고
    • Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function
    • Kim I., et al. Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J. Am. Soc. Nephrol. 2008, 19:455-468.
    • (2008) J. Am. Soc. Nephrol. , vol.19 , pp. 455-468
    • Kim, I.1
  • 109
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S., et al. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40:310-322.
    • (2010) Mol. Cell , vol.40 , pp. 310-322
    • Sengupta, S.1
  • 110
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 111
    • 0037097863 scopus 로고    scopus 로고
    • Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
    • Fingar D.C., et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16:1472-1487.
    • (2002) Genes Dev. , vol.16 , pp. 1472-1487
    • Fingar, D.C.1
  • 112
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S., et al. TOR signaling in growth and metabolism. Cell 2006, 124:471-484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1
  • 113
    • 59049087460 scopus 로고    scopus 로고
    • Bidirectional transport of amino acids regulates mTOR and autophagy
    • Nicklin P., et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009, 136:521-534.
    • (2009) Cell , vol.136 , pp. 521-534
    • Nicklin, P.1
  • 114
    • 70349239101 scopus 로고    scopus 로고
    • New insights into mTOR signaling: mTORC2 and beyond
    • Alessi D.R., et al. New insights into mTOR signaling: mTORC2 and beyond. Sci. Signal. 2009, 2:pe27.
    • (2009) Sci. Signal. , vol.2
    • Alessi, D.R.1
  • 115
    • 44949215822 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
    • Huang J., et al. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell. Biol. 2008, 28:4104-4115.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4104-4115
    • Huang, J.1
  • 116
    • 68049126433 scopus 로고    scopus 로고
    • Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors
    • Huang J., et al. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res. 2009, 69:6107-6114.
    • (2009) Cancer Res. , vol.69 , pp. 6107-6114
    • Huang, J.1
  • 117
    • 33646111903 scopus 로고    scopus 로고
    • Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
    • Cai S.L., et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 2006, 173:279-289.
    • (2006) J. Cell Biol. , vol.173 , pp. 279-289
    • Cai, S.L.1
  • 118
    • 0037855834 scopus 로고    scopus 로고
    • Identification of a proline-rich Akt substrate as a 14-3-3 binding partner
    • Kovacina K.S., et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 2003, 278:10189-10194.
    • (2003) J. Biol. Chem. , vol.278 , pp. 10189-10194
    • Kovacina, K.S.1
  • 119
    • 77949912176 scopus 로고    scopus 로고
    • Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1
    • Nascimento E.B., et al. Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1. Cell. Signal. 2010, 22:961-967.
    • (2010) Cell. Signal. , vol.22 , pp. 961-967
    • Nascimento, E.B.1
  • 120
    • 0035976615 scopus 로고    scopus 로고
    • Phosphatidic acid-mediated mitogenic activation of mTOR signaling
    • Fang Y., et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001, 294:1942-1945.
    • (2001) Science , vol.294 , pp. 1942-1945
    • Fang, Y.1
  • 121
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex I and its implications for rapamycin inhibition
    • Yip C.K., et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38:768-774.
    • (2010) Mol. Cell , vol.38 , pp. 768-774
    • Yip, C.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.