메뉴 건너뛰기




Volumn 5, Issue 4, 2010, Pages

Inhibition of proteasomal degradation of Rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL PROTEIN; PROTEASOME; PROTEIN MEC1; PROTEIN YKU70; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR RPN4; UNCLASSIFIED DRUG; DNA BINDING PROTEIN; RPN4 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 77956320509     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0009877     Document Type: Article
Times cited : (14)

References (56)
  • 1
    • 0027230956 scopus 로고
    • Extragenic suppressors of mutations in the cytoplasmic C terminus of SEC63 define five genes in Saccharomyces cerevisie
    • Nelson MK, Kurihara T, Silver PA (1993) Extragenic suppressors of mutations in the cytoplasmic C terminus of SEC63 define five genes in Saccharomyces cerevisie. Genetics 134: 159-173.
    • (1993) Genetics , vol.134 , pp. 159-173
    • Nelson, M.K.1    Kurihara, T.2    Silver, P.A.3
  • 2
    • 0032126426 scopus 로고    scopus 로고
    • Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle
    • Finley D, Tanaka K, Mann C, Feldmann H, Hochstrasser M, et al. (1998) Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem Sci 23: 244-245.
    • (1998) Trends Biochem Sci , vol.23 , pp. 244-245
    • Finley, D.1    Tanaka, K.2    Mann, C.3    Feldmann, H.4    Hochstrasser, M.5
  • 3
    • 0029119522 scopus 로고
    • A proteolytic pathway that recognizes ubiquitin as a degradation signal
    • Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270: 17442-17456.
    • (1995) J Biol Chem , vol.270 , pp. 17442-17456
    • Johnson, E.S.1    Ma, P.C.2    Ota, I.M.3    Varshavsky, A.4
  • 4
    • 0033004441 scopus 로고    scopus 로고
    • Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
    • Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450: 27-34.
    • (1999) FEBS Lett , vol.450 , pp. 27-34
    • Mannhaupt, G.1    Schnall, R.2    Karpov, V.3    Vetter, I.4    Feldmann, H.5
  • 5
    • 0035853037 scopus 로고    scopus 로고
    • RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
    • Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit. Proc Natl Acad Sci USA 98: 3056-3061.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3056-3061
    • Xie, Y.1    Varshavsky, A.2
  • 6
    • 2642560445 scopus 로고    scopus 로고
    • Proteasomal degradation of RPN4 via two distinct mechanisms: Ubiquitin-dependent and -independent
    • Ju D, Xie Y (2004) Proteasomal degradation of RPN4 via two distinct mechanisms: Ubiquitin-dependent and -independent. J Biol Chem 279: 23851-23854.
    • (2004) J Biol Chem , vol.279 , pp. 23851-23854
    • Ju, D.1    Xie, Y.2
  • 7
    • 33744960697 scopus 로고    scopus 로고
    • Identification of the preferential ubiquitination site and ubiquitin-dependent degradation signal of Rpn4
    • Ju D, Xie Y (2006) Identification of the preferential ubiquitination site and ubiquitin-dependent degradation signal of Rpn4. J Biol Chem 281: 10657-10662.
    • (2006) J Biol Chem , vol.281 , pp. 10657-10662
    • Ju, D.1    Xie, Y.2
  • 8
    • 35548985701 scopus 로고    scopus 로고
    • Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal
    • Ju D, Xu H, Wang X, Xie Y (2007) Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. Biochim Biophys Acta 1773: 1672-1680.
    • (2007) Biochim Biophys Acta , vol.1773 , pp. 1672-1680
    • Ju, D.1    Xu, H.2    Wang, X.3    Xie, Y.4
  • 9
    • 11244343965 scopus 로고    scopus 로고
    • Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
    • Wang L, Mao X, Ju D, Xie Y (2004) Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 279: 55218-55223.
    • (2004) J Biol Chem , vol.279 , pp. 55218-55223
    • Wang, L.1    Mao, X.2    Ju, D.3    Xie, Y.4
  • 10
    • 38949119689 scopus 로고    scopus 로고
    • Genome-wide analysis identifies MYNDdomain protein Mub1 as an essential factor for Rpn4 ubiquitylation
    • Ju D, Wang X, Xu H, Xie Y (2008) Genome-wide analysis identifies MYNDdomain protein Mub1 as an essential factor for Rpn4 ubiquitylation. Mol Cell Biol 28: 1404-1412.
    • (2008) Mol Cell Biol , vol.28 , pp. 1404-1412
    • Ju, D.1    Wang, X.2    Xu, H.3    Xie, Y.4
  • 11
    • 3543037588 scopus 로고    scopus 로고
    • Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit
    • Ju D, Wang L, Mao X, Xie Y (2004) Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem Biophys Res Commun 321: 51-57.
    • (2004) Biochem Biophys Res Commun , vol.321 , pp. 51-57
    • Ju, D.1    Wang, L.2    Mao, X.3    Xie, Y.4
  • 12
    • 2942620845 scopus 로고    scopus 로고
    • Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome
    • London M, Keck BI, Ramos PC, Dohmen RJ (2004) Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett 567: 259-264.
    • (2004) FEBS Lett , vol.567 , pp. 259-264
    • London, M.1    Keck, B.I.2    Ramos, P.C.3    Dohmen, R.J.4
  • 13
    • 0042091963 scopus 로고    scopus 로고
    • Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13
    • Lundgren J, Masson P, Realini CA, Young P (2003) Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13. Mol Cell Biol 23: 5320-5330.
    • (2003) Mol Cell Biol , vol.23 , pp. 5320-5330
    • Lundgren, J.1    Masson, P.2    Realini, C.A.3    Young, P.4
  • 14
    • 0037821846 scopus 로고    scopus 로고
    • Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes
    • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, et al. (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 278: 21517-21525.
    • (2003) J Biol Chem , vol.278 , pp. 21517-21525
    • Meiners, S.1    Heyken, D.2    Weller, A.3    Ludwig, A.4    Stangl, K.5
  • 15
    • 0037155196 scopus 로고    scopus 로고
    • Analysis of Drosophila 26S proteasome using RNA interference
    • Wójcik C, DeMartino GN (2002) Analysis of Drosophila 26S proteasome using RNA interference. J Biol Chem 277: 6188-6197.
    • (2002) J Biol Chem , vol.277 , pp. 6188-6197
    • Wójcik, C.1    de Martino, G.N.2
  • 16
    • 37249085621 scopus 로고    scopus 로고
    • Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells
    • Xu H, Ju D, Jarois T, Xie Y (2008) Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Res Treat 107: 267-274.
    • (2008) Breast Cancer Res Treat , vol.107 , pp. 267-274
    • Xu, H.1    Ju, D.2    Jarois, T.3    Xie, Y.4
  • 17
    • 0033772765 scopus 로고    scopus 로고
    • Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes
    • Jelinsky SA, Estep P, Church GM, Samson LD (2000) Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20: 8157-8167.
    • (2000) Mol Cell Biol , vol.20 , pp. 8157-8167
    • Jelinsky, S.A.1    Estep, P.2    Church, G.M.3    Samson, L.D.4
  • 18
    • 18944372150 scopus 로고    scopus 로고
    • Integrating phenotypic and expression profiles to map arsenic-response networks
    • Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, et al. (2004) Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol 5: R95.
    • (2004) Genome Biol , vol.5
    • Haugen, A.C.1    Kelley, R.2    Collins, J.B.3    Tucker, C.J.4    Deng, C.5
  • 19
    • 0035162698 scopus 로고    scopus 로고
    • Genomic expression response to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p
    • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, et al. (2001) Genomic expression response to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12: 2987-3003.
    • (2001) Mol Biol Cell , vol.12 , pp. 2987-3003
    • Gasch, A.P.1    Huang, M.2    Metzner, S.3    Botstein, D.4    Elledge, S.J.5
  • 20
    • 53349090516 scopus 로고    scopus 로고
    • Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine
    • Guo N, Yu L, Meng R, Fan J, Wang D, et al. (2008) Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine. Yeast 25: 631-641.
    • (2008) Yeast , vol.25 , pp. 631-641
    • Guo, N.1    Yu, L.2    Meng, R.3    Fan, J.4    Wang, D.5
  • 21
    • 57649120781 scopus 로고    scopus 로고
    • Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: Functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways
    • Hausmann S, Zheng S, Costanzo M, Brost RL, Garcin D, et al. (2008) Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. J Biol Chem 283: 31706-31718.
    • (2008) J Biol Chem , vol.283 , pp. 31706-31718
    • Hausmann, S.1    Zheng, S.2    Costanzo, M.3    Brost, R.L.4    Garcin, D.5
  • 22
    • 49249094963 scopus 로고    scopus 로고
    • Structure and properties of transcriptional networks driving selenite stress response in yeasts
    • Salin H, Fardeau V, Piccini E, Lelandais G, Tanty V, et al. (2008) Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics 9: 333.
    • (2008) BMC Genomics , vol.9 , pp. 333
    • Salin, H.1    Fardeau, V.2    Piccini, E.3    Lelandais, G.4    Tanty, V.5
  • 23
    • 38349048493 scopus 로고    scopus 로고
    • Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1
    • Teixeira MC, Dias PJ, Simões T, Sá-Correia I (2008) Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1. Biochem Biophys Res Commun 367: 249-255.
    • (2008) Biochem Biophys Res Commun , vol.367 , pp. 249-255
    • Teixeira, M.C.1    Dias, P.J.2    Simões, T.3    Sá-Correia, I.4
  • 24
    • 33644843117 scopus 로고    scopus 로고
    • A stress regulatory network for coordinated activation of proteasome expression mediated by yeast heat shock transcription factor
    • Hahn J-S, Neef DW, Thiele DJ (2006) A stress regulatory network for coordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 60: 240-251.
    • (2006) Mol Microbiol , vol.60 , pp. 240-251
    • Hahn, J.-S.1    Neef, D.W.2    Thiele, D.J.3
  • 25
    • 0036226237 scopus 로고    scopus 로고
    • Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae
    • Owsianik G, Balzi E, Ghislain M (2002) Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Mol Microbiol 43: 1295-1308.
    • (2002) Mol Microbiol , vol.43 , pp. 1295-1308
    • Owsianik, G.1    Balzi, E.2    Ghislain, M.3
  • 26
    • 34249007126 scopus 로고    scopus 로고
    • A ubiquitin stress response induces altered proteasome composition
    • Hanna J, Meides A, Zhang DP, Finley D (2007) A ubiquitin stress response induces altered proteasome composition. Cell 129: 747-759.
    • (2007) Cell , vol.129 , pp. 747-759
    • Hanna, J.1    Meides, A.2    Zhang, D.P.3    Finley, D.4
  • 27
    • 61849183551 scopus 로고    scopus 로고
    • Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions
    • Wang X, Xu H, Ju D, Xie Y (2008) Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics 180: 1945-1953.
    • (2008) Genetics , vol.180 , pp. 1945-1953
    • Wang, X.1    Xu, H.2    Ju, D.3    Xie, Y.4
  • 28
    • 77749274424 scopus 로고    scopus 로고
    • Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions
    • Wang X, Xu H, Ha S-W, Ju D, Xie Y (2010) Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics 184: 335-342.
    • (2010) Genetics , vol.184 , pp. 335-342
    • Wang, X.1    Xu, H.2    Ha, S.-W.3    Ju, D.4    Xie, Y.5
  • 29
    • 73749087130 scopus 로고    scopus 로고
    • The transcription activation domain of Rpn4 is separate from its degrons
    • Ju D, Xu H, Wang X, Xie Y (2010) The transcription activation domain of Rpn4 is separate from its degrons. Intl Biochem Cell Biol 42: 282-286.
    • (2010) Intl Biochem Cell Biol , vol.42 , pp. 282-286
    • Ju, D.1    Xu, H.2    Wang, X.3    Xie, Y.4
  • 30
    • 0032161269 scopus 로고    scopus 로고
    • A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
    • Zhao X, Muller EG, Rothstein R (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2: 329-340.
    • (1998) Mol Cell , vol.2 , pp. 329-340
    • Zhao, X.1    Muller, E.G.2    Rothstein, R.3
  • 31
    • 0030593033 scopus 로고    scopus 로고
    • Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
    • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, et al. (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271: 357-360.
    • (1996) Science , vol.271 , pp. 357-360
    • Sanchez, Y.1    Desany, B.A.2    Jones, W.J.3    Liu, Q.4    Wang, B.5
  • 32
    • 34548243751 scopus 로고    scopus 로고
    • Clamping the Mec1/ATR checkpoint kinase into action
    • Majka J, Burgers PM (2007) Clamping the Mec1/ATR checkpoint kinase into action. Cell Cycle 6: 1157-1160.
    • (2007) Cell Cycle , vol.6 , pp. 1157-1160
    • Majka, J.1    Burgers, P.M.2
  • 33
    • 0037178748 scopus 로고    scopus 로고
    • Interfaces between the detection, signaling, and repair of DNA damage
    • Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297: 547-551.
    • (2002) Science , vol.297 , pp. 547-551
    • Rouse, J.1    Jackson, S.P.2
  • 34
    • 0035109312 scopus 로고    scopus 로고
    • Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae
    • Foss EJ (2001) Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. Genetics 157: 567-577.
    • (2001) Genetics , vol.157 , pp. 567-577
    • Foss, E.J.1
  • 35
    • 34948812991 scopus 로고    scopus 로고
    • Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase
    • Hodgson B, Calzada A, Labib K (2007) Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 18: 3894-3902.
    • (2007) Mol Biol Cell , vol.18 , pp. 3894-3902
    • Hodgson, B.1    Calzada, A.2    Labib, K.3
  • 36
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, et al. (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424: 1078-1083.
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1    Kanoh, Y.2    Bando, M.3    Noguchi, H.4    Tanaka, H.5
  • 37
    • 0029150855 scopus 로고
    • TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1
    • Morrow DM, Tagle DA, Shiloh Y, Collins FS, Hieter P (1995) TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82: 831-840.
    • (1995) Cell , vol.82 , pp. 831-840
    • Morrow, D.M.1    Tagle, D.A.2    Shiloh, Y.3    Collins, F.S.4    Hieter, P.5
  • 38
    • 0029088371 scopus 로고
    • TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene
    • Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, et al. (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82: 823-829.
    • (1995) Cell , vol.82 , pp. 823-829
    • Greenwell, P.W.1    Kronmal, S.L.2    Porter, S.E.3    Gassenhuber, J.4    Obermaier, B.5
  • 39
    • 2642614786 scopus 로고    scopus 로고
    • Expansions and contractions in a tandem repeat induced by double-strand break repair
    • Pâques F, Leung W-Y, Haber JE (1998) Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol 18: 2045-2054.
    • (1998) Mol Cell Biol , vol.18 , pp. 2045-2054
    • Pâques, F.1    Leung, W.-Y.2    Haber, J.E.3
  • 41
    • 0032412476 scopus 로고    scopus 로고
    • Mating-type gene switching in Saccharomyces cerevisiae
    • Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32: 561-599.
    • (1998) Annu Rev Genet , vol.32 , pp. 561-599
    • Haber, J.E.1
  • 42
    • 19944388882 scopus 로고    scopus 로고
    • Proteasome involvement in the repair of DNA double-strand breaks
    • Krogan NJ, Lam MHY, Fillingham J, Keogh M-C, Gebbia M, et al. (2004) Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16: 1027-1034.
    • (2004) Mol Cell , vol.16 , pp. 1027-1034
    • Krogan, N.J.1    Lam, M.H.Y.2    Fillingham, J.3    Keogh, M.-C.4    Gebbia, M.5
  • 43
    • 37549025446 scopus 로고    scopus 로고
    • Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae
    • Jessulat M, Alamgir M, Salsali H, Greenblat J, Xu J, et al. (2008) Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae. Arch Biochem Biophys 469: 157-164.
    • (2008) Arch Biochem Biophys , vol.469 , pp. 157-164
    • Jessulat, M.1    Alamgir, M.2    Salsali, H.3    Greenblat, J.4    Xu, J.5
  • 44
    • 33748272677 scopus 로고    scopus 로고
    • Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage
    • Papamichos-Chronakis M, Krebs JE, Peterson CL (2006) Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev 20: 2437-2449.
    • (2006) Genes Dev , vol.20 , pp. 2437-2449
    • Papamichos-Chronakis, M.1    Krebs, J.E.2    Peterson, C.L.3
  • 45
    • 34648834736 scopus 로고    scopus 로고
    • Distinct roles for SRW1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks
    • van Attikum H, Fritsch O, Gasser SM (2007) Distinct roles for SRW1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 26: 4113-4125.
    • (2007) EMBO J , vol.26 , pp. 4113-4125
    • van Attikum, H.1    Fritsch, O.2    Gasser, S.M.3
  • 46
    • 18144423533 scopus 로고    scopus 로고
    • The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breakers
    • Shim EY, Ma J-L, Oum J-H, Yanez, Lee SE (2005) The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breakers. Mol Cell Biol 25: 3934-3944.
    • (2005) Mol Cell Biol , vol.25 , pp. 3934-3944
    • Shim, E.Y.1    Ma, J.-L.2    Oum, J.-H.3    Yanez4    Lee, S.E.5
  • 47
    • 0036812245 scopus 로고    scopus 로고
    • A genome-based screen for yeast mutants with an altered recombination/end-joining repair ratio
    • Wilson TE (2002) A genome-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162: 677-688.
    • (2002) Genetics , vol.162 , pp. 677-688
    • Wilson, T.E.1
  • 48
    • 0033574004 scopus 로고    scopus 로고
    • A role for FEN-1 in nonhomologous DNA end joining: The order of strand annealing and nucleolytic processing events
    • Wu X, Wilson TE, Lieber MR (1999) A role for FEN-1 in nonhomologous DNA end joining: the order of strand annealing and nucleolytic processing events. Proc Natl Acad Sci USA 96: 1303-1308.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 1303-1308
    • Wu, X.1    Wilson, T.E.2    Lieber, M.R.3
  • 49
    • 48149104385 scopus 로고    scopus 로고
    • Pol3 is involved in nonhomologous endjoining in Saccharomyces cerevisiae
    • Chan C, Galli A, Schiestl RH (2008) Pol3 is involved in nonhomologous endjoining in Saccharomyces cerevisiae. DNA Repair 7: 1531-1541.
    • (2008) DNA Repair , vol.7 , pp. 1531-1541
    • Chan, C.1    Galli, A.2    Schiestl, R.H.3
  • 50
    • 0032548779 scopus 로고    scopus 로고
    • Son1p is a component of the 26S proteasome of the yeast Saccharomyces cerevisiae
    • Fujimoro M, Tanaka K, Yokosawa H, Toh-e A (1998) Son1p is a component of the 26S proteasome of the yeast Saccharomyces cerevisiae, FEBS Lett 423: 149-154.
    • (1998) FEBS Lett , vol.423 , pp. 149-154
    • Fujimoro, M.1    Tanaka, K.2    Yokosawa, H.3    Toh-e, A.4
  • 51
    • 33846023720 scopus 로고    scopus 로고
    • Rtt109 is required for proper H3K56 acetylation: A chromatin mark associated with the elongating RNA polymerase II
    • Schnerder J, Bajwa P, Johnson FC, Bhaumik SR, Shilatifard A (2006) Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J Biol Chem 281: 37270-37274.
    • (2006) J Biol Chem , vol.281 , pp. 37270-37274
    • Schnerder, J.1    Bajwa, P.2    Johnson, F.C.3    Bhaumik, S.R.4    Shilatifard, A.5
  • 52
    • 0035105722 scopus 로고    scopus 로고
    • Homologous recombination repair of double-strand breaks in yeast in enhanced by MAT heterozygosity through yKu-dependent and-independent mechanism
    • Clikeman JA, Khalsa GJ, Barton SL, Nickoloff JA (2001) Homologous recombination repair of double-strand breaks in yeast in enhanced by MAT heterozygosity through yKu-dependent and-independent mechanism. Genetics 157: 579-589.
    • (2001) Genetics , vol.157 , pp. 579-589
    • Clikeman, J.A.1    Khalsa, G.J.2    Barton, S.L.3    Nickoloff, J.A.4
  • 53
    • 34447129653 scopus 로고    scopus 로고
    • Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination
    • Zhang Y, Hefferin ML, Chen L, Shim EY, Tseng H-M, et al. (2007) Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination. Nat Struc Mol Biol 14: 639-646.
    • (2007) Nat Struc Mol Biol , vol.14 , pp. 639-646
    • Zhang, Y.1    Hefferin, M.L.2    Chen, L.3    Shim, E.Y.4    Tseng, H.-M.5
  • 54
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 55
    • 0025362399 scopus 로고
    • A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
    • Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18: 3091-3092.
    • (1990) Nucleic Acids Res , vol.18 , pp. 3091-3092
    • Schmitt, M.E.1    Brown, T.A.2    Trumpower, B.L.3
  • 56
    • 0033529707 scopus 로고    scopus 로고
    • Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
    • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.A.1    Shoemaker, D.D.2    Astromoff, A.3    Liang, H.4    Anderson, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.