-
1
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999; 13: 2570-2580
-
(1999)
Genes Dev
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
2
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum HA Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001; 410: 227-230.
-
(2001)
Nature
, vol.410
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
3
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A. 2004; 101: 15998-16003.
-
(2004)
Proc Natl Acad Sci U S A.
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
4
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999; 260: 273-279.
-
(1999)
Biochem Biophys Res Commun
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
5
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000; 273: 793-798.
-
(2000)
Biochem Biophys Res Commun
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
6
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425: 191-196.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
-
7
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127: 1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
-
8
-
-
33751072349
-
Resveratrol improves health and survival of mice on a highcalorie diet
-
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. Resveratrol improves health and survival of mice on a highcalorie diet. Nature. 2006; 444: 337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
-
9
-
-
33744946526
-
Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats
-
Su HC, Hung LM Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2006; 290: E1339- 1346.
-
(2006)
Am J Physiol Endocrinol Metab
, vol.290
-
-
Su, H.C.1
Hung, L.M.2
Chen, J.K.3
-
10
-
-
33947321153
-
Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats
-
Chi TC, Chen WP, Chi TL, Kuo TF, Lee SS, et al. Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats. Life Sci. 2007; 80: 1713- 1720.
-
(2007)
Life Sci
, vol.80
, pp. 1713-1720
-
-
Chi, T.C.1
Chen, W.P.2
Chi, T.L.3
Kuo, T.F.4
Lee, S.S.5
-
11
-
-
77953941543
-
Role of mitochondria in beta-cell function and dysfunction
-
Maechler P, Li N, Casimir M, Vetterli L, Frigerio F, et al. Role of mitochondria in beta-cell function and dysfunction. Adv Exp Med Biol. 2010; 654: 193-216.
-
(2010)
Adv Exp Med Biol
, vol.654
, pp. 193-216
-
-
Maechler, P.1
Li, N.2
Casimir, M.3
Vetterli, L.4
Frigerio, F.5
-
12
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005; 2: 105-117.
-
(2005)
Cell Metab
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
Bernal-Mizrachi, E.4
Ford, E.5
-
13
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L, Motta MC, Picard F, Robinson A, Jhala US, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006; 4: e31.
-
(2006)
PLoS Biol
, vol.4
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
Robinson, A.4
Jhala, U.S.5
-
14
-
-
79953206276
-
Resveratrol Potentiates Glucose-stimulated Insulin Secretion in INS-1E {beta}-Cells and Human Islets through a SIRT1-dependent Mechanism
-
Vetterli L, Brun T, Giovannoni L, Bosco D Maechler P. Resveratrol Potentiates Glucose-stimulated Insulin Secretion in INS-1E {beta}-Cells and Human Islets through a SIRT1-dependent Mechanism. J Biol Chem. 2011; 286: 6049-6060.
-
(2011)
J Biol Chem
, vol.286
, pp. 6049-6060
-
-
Vetterli, L.1
Brun, T.2
Giovannoni, L.3
Bosco, D.4
Maechler, P.5
-
15
-
-
34047252002
-
Resveratrol binds to the sulfonylurea receptor (SUR) and induces apoptosis in a SUR subtype-specific manner
-
Hambrock A, de Oliveira Franz CB, Hiller S, Grenz A, Ackermann S, et al. Resveratrol binds to the sulfonylurea receptor (SUR) and induces apoptosis in a SUR subtype-specific manner. J Biol Chem. 2007; 282: 3347-3356.
-
(2007)
J Biol Chem
, vol.282
, pp. 3347-3356
-
-
Hambrock, A.1
de Oliveira Franz, C.B.2
Hiller, S.3
Grenz, A.4
Ackermann, S.5
-
16
-
-
0035807902
-
A transcription factor regulatory circuit in differentiated pancreatic cells
-
Boj SF, Parrizas M, Maestro MA Ferrer J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci U S A. 2001; 98: 14481-14486.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 14481-14486
-
-
Boj, S.F.1
Parrizas, M.2
Maestro, M.A.3
Ferrer, J.4
-
17
-
-
0030457705
-
Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor
-
Waeber G, Thompson N, Nicod P Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. 1996; 10: 1327-1334.
-
(1996)
Mol Endocrinol
, vol.10
, pp. 1327-1334
-
-
Waeber, G.1
Thompson, N.2
Nicod, P.3
Bonny, C.4
-
18
-
-
33749349202
-
Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice
-
Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006; 55: 2180-2191.
-
(2006)
Diabetes
, vol.55
, pp. 2180-2191
-
-
Zang, M.1
Xu, S.2
Maitland-Toolan, K.A.3
Zuccollo, A.4
Hou, X.5
-
19
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMPactivated protein kinase
-
Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMPactivated protein kinase. J Biol Chem. 2008; 283: 20015-20026.
-
(2008)
J Biol Chem
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
Sato, K.4
Jiang, B.5
-
20
-
-
34249846128
-
Resveratrol stimulates AMP kinase activity in neurons
-
Dasgupta B Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A. 2007; 104: 7217- 7222.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 7217-7222
-
-
Dasgupta, B.1
Milbrandt, J.2
-
21
-
-
53049091294
-
Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt
-
Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, et al. Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem. 2008; 283: 24194-24201.
-
(2008)
J Biol Chem
, vol.283
, pp. 24194-24201
-
-
Chan, A.Y.1
Dolinsky, V.W.2
Soltys, C.L.3
Viollet, B.4
Baksh, S.5
-
22
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458: 1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
-
23
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010; 11: 213-219.
-
(2010)
Cell Metab
, vol.11
, pp. 213-219
-
-
Canto, C.1
Jiang, L.Q.2
Deshmukh, A.S.3
Mataki, C.4
Coste, A.5
-
24
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008; 14: 661-673.
-
(2008)
Dev Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
Hoffman, E.P.4
McBurney, M.W.5
-
25
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004; 305: 390-392.
-
(2004)
Science
, vol.305
, pp. 390-392
-
-
Cohen, H.Y.1
Miller, C.2
Bitterman, K.J.3
Wall, N.R.4
Hekking, B.5
-
26
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434: 113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
-
27
-
-
71449105535
-
FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol
-
Ganjam GK, Dimova EY, Unterman TG Kietzmann T. FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J Biol Chem. 2009; 284: 30783-30797.
-
(2009)
J Biol Chem
, vol.284
, pp. 30783-30797
-
-
Ganjam, G.K.1
Dimova, E.Y.2
Unterman, T.G.3
Kietzmann, T.4
-
28
-
-
77956260966
-
Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization
-
Qiang L, Banks AS Accili D. Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J Biol Chem. 2010; 285: 27396-27401.
-
(2010)
J Biol Chem
, vol.285
, pp. 27396-27401
-
-
Qiang, L.1
Banks, A.S.2
Accili, D.3
-
29
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC- 1alpha interaction
-
Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC- 1alpha interaction. Nature. 2003; 423: 550-555.
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
Walkey, C.J.4
Yoon, J.C.5
-
30
-
-
0242349197
-
Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis
-
Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A. 2003; 100: 4012-4017.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 4012-4017
-
-
Rhee, J.1
Inoue, Y.2
Yoon, J.C.3
Puigserver, P.4
Fan, M.5
-
31
-
-
27744518040
-
FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction
-
Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005; 2: 153-163.
-
(2005)
Cell Metab
, vol.2
, pp. 153-163
-
-
Kitamura, Y.I.1
Kitamura, T.2
Kruse, J.P.3
Raum, J.C.4
Stein, R.5
-
32
-
-
0029893530
-
Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells
-
Harbeck MC, Louie DC, Howland J, Wolf BA Rothenberg PL. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabetes. 1996; 45: 711-717.
-
(1996)
Diabetes
, vol.45
, pp. 711-717
-
-
Harbeck, M.C.1
Louie, D.C.2
Howland, J.3
Wolf, B.A.4
Rothenberg, P.L.5
-
33
-
-
77449139439
-
Overexpression of kinase-negative protein kinase Cdelta in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction
-
Hennige AM, Ranta F, Heinzelmann I, Dufer M, Michael D, et al. Overexpression of kinase-negative protein kinase Cdelta in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction. Diabetes. 2010; 59: 119- 127.
-
(2010)
Diabetes
, vol.59
, pp. 119-127
-
-
Hennige, A.M.1
Ranta, F.2
Heinzelmann, I.3
Dufer, M.4
Michael, D.5
-
34
-
-
0036787607
-
Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1
-
Nakae J, Biggs WH, 3rd, Kitamura T, Cavenee WK, Wright CV, et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet. 2002; 32: 245-253.
-
(2002)
Nat Genet
, vol.32
, pp. 245-253
-
-
Nakae, J.1
Biggs III, W.H.2
Kitamura, T.3
Cavenee, W.K.4
Wright, C.V.5
-
35
-
-
0033522897
-
Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway
-
Nakae J, Park BC Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem. 1999; 274: 15982-15985.
-
(1999)
J Biol Chem
, vol.274
, pp. 15982-15985
-
-
Nakae, J.1
Park, B.C.2
Accili, D.3
-
36
-
-
0038686576
-
Suppression of beta cell energy metabolism and insulin release by PGC- 1alpha
-
Yoon JC, Xu G, Deeney JT, Yang SN, Rhee J, et al. Suppression of beta cell energy metabolism and insulin release by PGC- 1alpha. Dev Cell. 2003; 5: 73-83.
-
(2003)
Dev Cell
, vol.5
, pp. 73-83
-
-
Yoon, J.C.1
Xu, G.2
Deeney, J.T.3
Yang, S.N.4
Rhee, J.5
-
37
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001; 413: 131-138.
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
|