-
1
-
-
0033304603
-
The glucagon-like peptides.
-
Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev 1999; 20: 876-913.
-
(1999)
Endocr Rev
, vol.20
, pp. 876-913
-
-
Kieffer, T.J.1
Habener, J.F.2
-
2
-
-
0035920170
-
Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice.
-
Furuta M, Zhou A, Webb G et al. Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J Biol Chem 2001; 276: 27197-27202.
-
(2001)
J Biol Chem
, vol.276
, pp. 27197-27202
-
-
Furuta, M.1
Zhou, A.2
Webb, G.3
-
3
-
-
0037417984
-
Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice.
-
Gelling RW, Du XQ, Dichmann DS et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A 2003; 100: 1438-1443.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 1438-1443
-
-
Gelling, R.W.1
Du, X.Q.2
Dichmann, D.S.3
-
4
-
-
73249117478
-
Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {alpha}-cells but not of intestinal L-cells.
-
Hayashi Y, Yamamoto M, Mizoguchi H et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {alpha}-cells but not of intestinal L-cells. Mol Endocrinol 2009; 23: 1990-1999.
-
(2009)
Mol Endocrinol
, vol.23
, pp. 1990-1999
-
-
Hayashi, Y.1
Yamamoto, M.2
Mizoguchi, H.3
-
5
-
-
33846856711
-
Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains.
-
Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007; 28: 84-116.
-
(2007)
Endocr Rev
, vol.28
, pp. 84-116
-
-
Gromada, J.1
Franklin, I.2
Wollheim, C.B.3
-
6
-
-
34248223285
-
Biology of incretins: GLP-1 and GIP.
-
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-2157.
-
(2007)
Gastroenterology
, vol.132
, pp. 2131-2157
-
-
Baggio, L.L.1
Drucker, D.J.2
-
7
-
-
0023787950
-
Glucagon gene expression in vertebrate brain.
-
Drucker DJ, Asa S. Glucagon gene expression in vertebrate brain. J Biol Chem 1988; 263: 13475-13478.
-
(1988)
J Biol Chem
, vol.263
, pp. 13475-13478
-
-
Drucker, D.J.1
Asa, S.2
-
8
-
-
65249118304
-
Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress.
-
Zhang R, Packard BA, Tauchi M, D'Alessio DA, Herman JP. Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proc Natl Acad Sci U S A 2009; 106: 5913-5918.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 5913-5918
-
-
Zhang, R.1
Packard, B.A.2
Tauchi, M.3
D'Alessio, D.A.4
Herman, J.P.5
-
9
-
-
0032566796
-
Association of leptin receptor (OB-Rb), NPY and GLP-1 gene expression in the ovine and murine brainstem.
-
Mercer JG, Moar KM, Findlay PA, Hoggard N, Adam CL. Association of leptin receptor (OB-Rb), NPY and GLP-1 gene expression in the ovine and murine brainstem. Regul Pept 1998; 75-76: 271-278.
-
(1998)
Regul Pept
, vol.75-76
, pp. 271-278
-
-
Mercer, J.G.1
Moar, K.M.2
Findlay, P.A.3
Hoggard, N.4
Adam, C.L.5
-
10
-
-
0024421193
-
Characterization of glucagon-like peptide-1-(7-36)amide in the hypothalamus.
-
Kreymann B, Ghatei MA, Burnet P et al. Characterization of glucagon-like peptide-1-(7-36)amide in the hypothalamus. Brain Res 1989; 502: 325-331.
-
(1989)
Brain Res
, vol.502
, pp. 325-331
-
-
Kreymann, B.1
Ghatei, M.A.2
Burnet, P.3
-
11
-
-
0035123349
-
The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site.
-
Wang J, Xu J, Finnerty J, Furuta M, Steiner DF, Verchere CB. The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes 2001; 50: 534-539.
-
(2001)
Diabetes
, vol.50
, pp. 534-539
-
-
Wang, J.1
Xu, J.2
Finnerty, J.3
Furuta, M.4
Steiner, D.F.5
Verchere, C.B.6
-
12
-
-
0036066639
-
Glucagon replacement via micro-osmotic pump corrects hypoglycemia and alpha-cell hyperplasia in prohormone convertase 2 knockout mice.
-
Webb GC, Akbar MS, Zhao C, Swift HH, Steiner DF. Glucagon replacement via micro-osmotic pump corrects hypoglycemia and alpha-cell hyperplasia in prohormone convertase 2 knockout mice. Diabetes 2002; 51: 398-405.
-
(2002)
Diabetes
, vol.51
, pp. 398-405
-
-
Webb, G.C.1
Akbar, M.S.2
Zhao, C.3
Swift, H.H.4
Steiner, D.F.5
-
13
-
-
78751649529
-
PCSK2-null mice exhibit delayed intestinal motility, reduced refeeding response and altered plasma levels of several regulatory peptides.
-
Gagnon J, Mayne J, Chen A et al. PCSK2-null mice exhibit delayed intestinal motility, reduced refeeding response and altered plasma levels of several regulatory peptides. Life Sci 2011; 88: 212-217.
-
(2011)
Life Sci
, vol.88
, pp. 212-217
-
-
Gagnon, J.1
Mayne, J.2
Chen, A.3
-
14
-
-
33845919110
-
Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia.
-
Conarello SL, Jiang G, Mu J et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia 2007; 50: 142-150.
-
(2007)
Diabetologia
, vol.50
, pp. 142-150
-
-
Conarello, S.L.1
Jiang, G.2
Mu, J.3
-
15
-
-
77957259261
-
Glucagon-like peptide-1 receptor knockout mice are protected from high-fat diet-induced insulin resistance.
-
Ayala JE, Bracy DP, James FD, Burmeister MA, Wasserman DH, Drucker DJ. Glucagon-like peptide-1 receptor knockout mice are protected from high-fat diet-induced insulin resistance. Endocrinology 2010; 151: 4678-4687.
-
(2010)
Endocrinology
, vol.151
, pp. 4678-4687
-
-
Ayala, J.E.1
Bracy, D.P.2
James, F.D.3
Burmeister, M.A.4
Wasserman, D.H.5
Drucker, D.J.6
-
16
-
-
77951436599
-
Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway.
-
Gupta NA, Mells J, Dunham RM et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010; 51: 1584-1592.
-
(2010)
Hepatology
, vol.51
, pp. 1584-1592
-
-
Gupta, N.A.1
Mells, J.2
Dunham, R.M.3
-
17
-
-
66749102158
-
Clinical review: the extrapancreatic effects of glucagon-like peptide-1 and related peptides.
-
Abu-Hamdah R, Rabiee A, Meneilly GS, Shannon RP, Andersen DK, Elahi D. Clinical review: the extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab 2009; 94: 1843-1852.
-
(2009)
J Clin Endocrinol Metab
, vol.94
, pp. 1843-1852
-
-
Abu-Hamdah, R.1
Rabiee, A.2
Meneilly, G.S.3
Shannon, R.P.4
Andersen, D.K.5
Elahi, D.6
-
18
-
-
0029958404
-
Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene.
-
Scrocchi LA, Brown TJ, MaClusky N et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996; 2: 1254-1258.
-
(1996)
Nat Med
, vol.2
, pp. 1254-1258
-
-
Scrocchi, L.A.1
Brown, T.J.2
MaClusky, N.3
-
19
-
-
77957599543
-
Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor.
-
Gu W, Winters KA, Motani AS et al. Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor. Am J Physiol Endocrinol Metab 2010; 299: E624-632.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.299
-
-
Gu, W.1
Winters, K.A.2
Motani, A.S.3
-
20
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy.
-
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774-785.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
21
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action.
-
Zhou G, Myers R, Li Y et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167-1174.
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
22
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism.
-
Koo SH, Flechner L, Qi L et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005; 437: 1109-1111.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
-
23
-
-
67649657842
-
CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis.
-
Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner KH. CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab 2009; 10: 55-62.
-
(2009)
Cell Metab
, vol.10
, pp. 55-62
-
-
Le Lay, J.1
Tuteja, G.2
White, P.3
Dhir, R.4
Ahima, R.5
Kaestner, K.H.6
-
24
-
-
11144219992
-
Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase.
-
Kimball SR, Siegfried BA, Jefferson LS. Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 2004; 279: 54103-54109.
-
(2004)
J Biol Chem
, vol.279
, pp. 54103-54109
-
-
Kimball, S.R.1
Siegfried, B.A.2
Jefferson, L.S.3
-
25
-
-
54849431792
-
The glucagon receptor is required for the adaptive metabolic response to fasting.
-
Longuet C, Sinclair EM, Maida A et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 2008; 8: 359-371.
-
(2008)
Cell Metab
, vol.8
, pp. 359-371
-
-
Longuet, C.1
Sinclair, E.M.2
Maida, A.3
-
26
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.
-
Liu Y, Dentin R, Chen D et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008; 456: 269-273.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
-
27
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
28
-
-
67650488877
-
SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats.
-
Erion DM, Yonemitsu S, Nie Y et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A 2009; 106: 11288-11293.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 11288-11293
-
-
Erion, D.M.1
Yonemitsu, S.2
Nie, Y.3
-
29
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
-
Canto C, Gerhart-Hines Z, Feige JN et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458: 1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
30
-
-
2342466734
-
Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.
-
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047-1053.
-
(2004)
Diabetes Care
, vol.27
, pp. 1047-1053
-
-
Wild, S.1
Roglic, G.2
Green, A.3
Sicree, R.4
King, H.5
-
31
-
-
77149165088
-
Minireview: estrogenic protection of beta-cell failure in metabolic diseases.
-
Liu S, Mauvais-Jarvis F. Minireview: estrogenic protection of beta-cell failure in metabolic diseases. Endocrinology 2010; 151: 859-864.
-
(2010)
Endocrinology
, vol.151
, pp. 859-864
-
-
Liu, S.1
Mauvais-Jarvis, F.2
-
32
-
-
0033966768
-
Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2.
-
Kido Y, Burks DJ, Withers D et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 2000; 105: 199-205.
-
(2000)
J Clin Invest
, vol.105
, pp. 199-205
-
-
Kido, Y.1
Burks, D.J.2
Withers, D.3
-
33
-
-
0038660725
-
Insulin secretory deficiency and glucose intolerance in Rab3A null mice.
-
Yaekura K, Julyan R, Wicksteed BL et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem 2003; 278: 9715-9721.
-
(2003)
J Biol Chem
, vol.278
, pp. 9715-9721
-
-
Yaekura, K.1
Julyan, R.2
Wicksteed, B.L.3
-
34
-
-
41649086377
-
Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice.
-
Gustavsson N, Lao Y, Maximov A et al. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci U S A 2008; 105: 3992-3997.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 3992-3997
-
-
Gustavsson, N.1
Lao, Y.2
Maximov, A.3
-
35
-
-
66149089158
-
The circadian clock components CRY1 and CRY2 are necessary to sustain sex dimorphism in mouse liver metabolism.
-
Bur IM, Cohen-Solal AM, Carmignac D et al. The circadian clock components CRY1 and CRY2 are necessary to sustain sex dimorphism in mouse liver metabolism. J Biol Chem 2009; 284: 9066-9073.
-
(2009)
J Biol Chem
, vol.284
, pp. 9066-9073
-
-
Bur, I.M.1
Cohen-Solal, A.M.2
Carmignac, D.3
-
36
-
-
77957821693
-
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis.
-
Zhang EE, Liu Y, Dentin R et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 2010; 16: 1152-1156.
-
(2010)
Nat Med
, vol.16
, pp. 1152-1156
-
-
Zhang, E.E.1
Liu, Y.2
Dentin, R.3
-
37
-
-
70349774453
-
The transcriptional response of the islet to pregnancy in mice.
-
Rieck S, White P, Schug J et al. The transcriptional response of the islet to pregnancy in mice. Mol Endocrinol 2009; 23: 1702-1712.
-
(2009)
Mol Endocrinol
, vol.23
, pp. 1702-1712
-
-
Rieck, S.1
White, P.2
Schug, J.3
-
38
-
-
77954480533
-
Serotonin regulates pancreatic beta cell mass during pregnancy.
-
Kim H, Toyofuku Y, Lynn FC et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 2010; 16: 804-808.
-
(2010)
Nat Med
, vol.16
, pp. 804-808
-
-
Kim, H.1
Toyofuku, Y.2
Lynn, F.C.3
-
40
-
-
0029868156
-
PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum.
-
Offield MF, Jetton TL, Labosky PA et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996; 122: 983-995.
-
(1996)
Development
, vol.122
, pp. 983-995
-
-
Offield, M.F.1
Jetton, T.L.2
Labosky, P.A.3
-
41
-
-
0034652287
-
Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas.
-
Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 2000; 97: 1607-1611.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 1607-1611
-
-
Gradwohl, G.1
Dierich, A.2
LeMeur, M.3
Guillemot, F.4
-
42
-
-
0030914931
-
Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas.
-
St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 1997; 387: 406-409.
-
(1997)
Nature
, vol.387
, pp. 406-409
-
-
St-Onge, L.1
Sosa-Pineda, B.2
Chowdhury, K.3
Mansouri, A.4
Gruss, P.5
-
43
-
-
0142091542
-
Opposing actions of Arx and Pax4 in endocrine pancreas development.
-
Collombat P, Mansouri A, Hecksher-Sorensen J et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003; 17: 2591-2603.
-
(2003)
Genes Dev
, vol.17
, pp. 2591-2603
-
-
Collombat, P.1
Mansouri, A.2
Hecksher-Sorensen, J.3
-
44
-
-
77958512364
-
Pax6 controls the expression of critical genes involved in pancreatic {alpha} cell differentiation and function.
-
Gosmain Y, Marthinet E, Cheyssac C et al. Pax6 controls the expression of critical genes involved in pancreatic {alpha} cell differentiation and function. J Biol Chem 2010; 285: 33381-33393.
-
(2010)
J Biol Chem
, vol.285
, pp. 33381-33393
-
-
Gosmain, Y.1
Marthinet, E.2
Cheyssac, C.3
-
45
-
-
42549138804
-
Nesidioblastosis and hyperplasia of alpha cells, microglucagonoma, and nonfunctioning islet cell tumor of the pancreas: review of the literature.
-
Yu R, Nissen NN, Dhall D, Heaney AP. Nesidioblastosis and hyperplasia of alpha cells, microglucagonoma, and nonfunctioning islet cell tumor of the pancreas: review of the literature. Pancreas 2008; 36: 428-431.
-
(2008)
Pancreas
, vol.36
, pp. 428-431
-
-
Yu, R.1
Nissen, N.N.2
Dhall, D.3
Heaney, A.P.4
-
46
-
-
58149380117
-
Glucagon cell adenomatosis: a newly recognized disease of the endocrine pancreas.
-
Henopp T, Anlauf M, Schmitt A et al. Glucagon cell adenomatosis: a newly recognized disease of the endocrine pancreas. J Clin Endocrinol Metab 2009; 94: 213-217.
-
(2009)
J Clin Endocrinol Metab
, vol.94
, pp. 213-217
-
-
Henopp, T.1
Anlauf, M.2
Schmitt, A.3
-
47
-
-
70350666371
-
Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor.
-
Zhou C, Dhall D, Nissen NN, Chen CR, Yu R. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 2009; 38: 941-946.
-
(2009)
Pancreas
, vol.38
, pp. 941-946
-
-
Zhou, C.1
Dhall, D.2
Nissen, N.N.3
Chen, C.R.4
Yu, R.5
-
48
-
-
77957320355
-
Partial loss of pancreas endocrine and exocrine cells of human ARX-null mutation: consideration of pancreas differentiation.
-
Itoh M, Takizawa Y, Hanai S et al. Partial loss of pancreas endocrine and exocrine cells of human ARX-null mutation: consideration of pancreas differentiation. Differentiation 2010; 80: 118-122.
-
(2010)
Differentiation
, vol.80
, pp. 118-122
-
-
Itoh, M.1
Takizawa, Y.2
Hanai, S.3
-
49
-
-
51349133256
-
Interleukin-6 regulates pancreatic alpha-cell mass expansion.
-
Ellingsgaard H, Ehses JA, Hammar EB et al. Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A 2008; 105: 13163-13168.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 13163-13168
-
-
Ellingsgaard, H.1
Ehses, J.A.2
Hammar, E.B.3
-
50
-
-
0033914183
-
The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake.
-
Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 2000; 6: 802-807.
-
(2000)
Nat Med
, vol.6
, pp. 802-807
-
-
Tang-Christensen, M.1
Larsen, P.J.2
Thulesen, J.3
Romer, J.4
Vrang, N.5
-
51
-
-
0036097362
-
Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion.
-
Date Y, Nakazato M, Hashiguchi S et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 2002; 51: 124-129.
-
(2002)
Diabetes
, vol.51
, pp. 124-129
-
-
Date, Y.1
Nakazato, M.2
Hashiguchi, S.3
-
52
-
-
0027952880
-
Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor.
-
Upchurch BH, Aponte GW, Leiter AB. Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development 1994; 120: 245-252.
-
(1994)
Development
, vol.120
, pp. 245-252
-
-
Upchurch, B.H.1
Aponte, G.W.2
Leiter, A.B.3
-
53
-
-
23844554610
-
Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice.
-
Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 2005; 146: 3748-3756.
-
(2005)
Endocrinology
, vol.146
, pp. 3748-3756
-
-
Talsania, T.1
Anini, Y.2
Siu, S.3
Drucker, D.J.4
Brubaker, P.L.5
-
54
-
-
77954980506
-
Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice.
-
Hancock AS, Du A, Liu J, Miller M, May CL. Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol Endocrinol 2010; 24: 1605-1614.
-
(2010)
Mol Endocrinol
, vol.24
, pp. 1605-1614
-
-
Hancock, A.S.1
Du, A.2
Liu, J.3
Miller, M.4
May, C.L.5
-
55
-
-
68849090270
-
Hepatic energy state is regulated by glucagon receptor signaling in mice.
-
Berglund ED, Lee-Young RS, Lustig DG et al. Hepatic energy state is regulated by glucagon receptor signaling in mice. J Clin Invest 2009; 119: 2412-2422.
-
(2009)
J Clin Invest
, vol.119
, pp. 2412-2422
-
-
Berglund, E.D.1
Lee-Young, R.S.2
Lustig, D.G.3
|